Vehicle Dynamics Models for Driving Simulators

Thomas D. Gillespie, Director of Product Planning

Mechanical Simulation Corporation

Agenda

- Introduction to Mechanical Simulation
- Vehicle dynamics simulation software
- Engineering driving simulators
 - Wide range of vehicles, features, capabilities and prices
- Advantages of high-fidelity vehicle model

New automotive technologies

- ADAS compatibility with road systems
- CAMP Vehicle to vehicle and vehicle to infrastructure

Questions

Mechanical Simulation Corporation

Founded in 1996 in Ann Arbor

- Dr. Thomas Gillespie
- Dr. Michaels Sayers
- University of Michigan Transportation Research Institute (UMTRI)
- 40+ years experience in vehicle dynamics and testing

PhDs specializing

- vehicle dynamics
- control theory
- real-time systems

Technical expertise

- vehicle dynamics
- test engineering
- automotive R & D
- racing

Car*Sim*

- Cars, light trucks, SUVs, race cars
- Trailer option
- 15 sample vehicles
- 150+ test examples

E 🖭 🖻 🛣 👻 🖄 🖄	😥 🖹 🕹 🗋 🔒 Withher	<u>é</u> 🗒 (
Valida Size and Shape Spring mans Papel Spring Mass Collean Hebbled Spring Mass		2015
C-Claus Heldblack Aero Avenutic shape(s) Shape Group C-Claus Heldblack Bile(s)		
ad	Frant Surgension type (redependent) Frant Samandatis Independent)	Pener Surgemeinen type Lindespendent Pener konstration tidespendent
Possibility Post-based data (**) Post-based data (**) 105100 (**)	COast, HetOback - Poor Superator Front compliance Independent Collean, Metoback - Poor Core,	C-Osca Hatchback -Rear Supervice Rear compliance Independent C-Osca -Hatchback -Rear Comp
Diske system, finiteed system	Poptencer to 200/05 AVA	Plightness fee 205,05 PDB
CONTRACTOR 1	Labborthe w	Labourto
Deering system: Rolead sheet V C-Claus, Histothack, Rower, High?	205/05.401	205/05/4/16

Truck Sim

- Combination vehicles (trucks and trailers)
- Dual tires, multiple axles
- 12 sample truck-traileraxle configurations
- 100+ test examples
- Custom configurations

Bike Sim

- Motorcycle dynamics
- Touring, racing, motocross, and scooters
- 10 sample bikes
- 40+ test examples

Used in over 750 driving simulators worldwide

Engineering Testing Results

Example Animation Example Plots

Mechanical Simulation

Worldwide Customers

- 45+ Car and Truck OEMs
- 60+ Tier 1 and Tier 2 Suppliers
- 200+ Universities, Testing and Research Organizations

70% of Licenses are outside of U.S.

0-0-

Global Sales and Technical Support

0-0-

Human Factors Driving Simulators

- Research into:
 - Driving behavior
 - Driver performance
 - Drug interactions
 - Design of vehicle controls

University of Michigan

Ford VIRTTEX

FORUM 8 simulator at 2008 ITS WC in NYC

Human Factors Research with city-driving scenarios

Marketing Simulators

- Teach customers about new product features
- ESC electronic stability control
- ACC adaptive cruise control
- LDW lane departure warning
- LKA lane keeping assist (steering intervention)
- CWS collision warning and collision mitigation systems
- BSD blind spot detection

■

High-fidelity vehicle model is important in this application

Geely Automotive – "BMBS" Blowout Monitoring Braking System

Mechanical Simulation

CarSim Graphics for Marketing

Engineering Simulators

Designed and built by Mechanical Simulation Used for SIL testing, HIL and

ADAS (new safety systems)

Fixed Base

Motion Base

High-fidelity vehicle models are required in these applications

CarSim DS Proving Ground Facility

Forum8 simulator at 2009 SEMA Show

Mechanical Simulation

CarSim on a proving ground made with UC-win/Road scenario software

Tire Manufacturer R&D Example

Evaluate handling and steering feel of different tire designs

A high-fidelity vehicle model is required in this application

Electronics Influence All Vehicle Dynamics

Advanced Driver Assistance Systems (ADAS)

Mechanical Simulation

Any Chassis System can be "Driven"

0-0-

ADAS Safety Development and Testing

78-ton motion platform
15' x 23' enclosed dome
65' x 135' range of motion
360 deg. visual system
CarSim vehicle dynamics

...

Driving Simulator System Considerations

Driver environment

- Desktop, Cockpit, Partial Vehicle, Full Vehicle
- Open or closed driver compartment
- Type of steering system, pedals, and shifter
- Number of screens 1, 3, 5, 8+
- Type of visual display monitors or projection system
- Scenario software requirements

Fixed-base or Motion-base

- Space allocation for driving simulator
- Motion platform weight requirements
- Range of motion requirements x, y, z, roll, pitch, yaw
- Type of motion system electric, hydraulic
- Motion hardware 3 DOF, 6 DOF hexapod, 7-8-9 DOF (sliding tracks and rotation)

Budget

0-0-

Future Intelligent Transportation Systems

Vehicle communication and safety control systems

V2V - "vehicle to vehicle"

- Severe braking by a vehicle several cars ahead
- Slippery road conditions another vehicle spins out ahead
- Severe curve and speed too fast
- Cross-traffic vehicle is going to intersect your car
- V2I vehicle to infrastructure
- Weather conditions indicate icy road ahead
- Your vehicle is going too fast to stop at a traffic signal
- Cross-road vehicle is going to run a red light

Future vehicle controls

- Many vehicles with V2V, V2I and ADAS systems for "zero" accidents
- Platooning control speed of all vehicles for best traffic flow with minimum fuel usage and emissions

CAMP – crash avoidance metrics partnership

- · Height
- · Time
- · Heading Angle
- · Speed
- · Lateral Acceleration
- · Longitudinal Acceleration · Yaw Rate
- · Headlight Status · Turn Signal Status Traction Control State · Anti-Lock Brake State · Vehicle Length

· Steering Wheel Angle

· Vehicle Width

Publications at: http://www-nrd.nhtsa.dot.gov/pdf/nrd-12/060419-0843/

VSC Message Composition

- One common message supports all safety applications.
- Exchange with neighboring vehicles.
- Send periodically (heartbeat) or eventtriggered.

Forum8 VR Conference; Nov. 16, 2011

Mechanical Simulation

 \mathbf{o}

Thank You