Disaster Analysis using xpswmm: *Some modelling tips*

XJ

Dr. Ashis Dey Principal | Water Engineering

Sudesh Mudaliar VP | Asia Pacific

Solutions

Flood – the most devastation disaster

Flood/Tsunami is one of the worst disaster in Japan and around the world. We still remember –

- Boxing Day Tsunami in Indian ocean 2004
 - Deaths 230,000+ (14 countries)
 - Waves up to 30 meters
- East Japan Tsunami 2011
 - Deaths: 15,828 (missing 3,760)
 - Buildings destroyed: 125,000
- Brisbane Flooding in 2011
 - Deaths: 35 (missing 9)
 - Damages: A\$30 billion

Brisbane Flood (2011)

Source: www.abc.net.au

Japan Tsunami (2011)

Source: www.abc.net.au

DTM Quality & Basic Decision

- DTM Quality very important
 - Resolution of topography data
- River in 1D or 2D ?
 - Depends on river width and cell size
 - DTM quality to represent the river xsection
- Cell Size Selection
 - Small enough to meet hydraulic objectives
 - Large enough to minimise run-times
 - Coarser than DTM

Influence of Cell Size

Halving the cell size increases run-time by a factor of eight (8) — keep this in mind!

Multi - Grids

- Multi Grid option may necessary
 <u>For example</u>
 - 2m in Urban Area
 - 5m in River
 - 10m in Undeveloped Floodplain

2D Theory Inside the Black Box

X) solutions

The Equations: Momentum Equation

Important Terms: Bed Resistance

- Manning's Roughness (n)
- Often it is the most dominant term
- When compared with 1D, 2D n-value maybe:

0.4m superelevation across the river banks at bend (20 m deep & 4 m/s)

Important Terms: Inertia

- Very important where velocity
 - Speeds up or slows down
 - Changes direction
- Essential at structures and bends

Important Terms: Viscosity/Turbulence

- Important where bed resistance term does not dominate and a rapid changes in velocity occur – usually:
 - Where Manning's n values are low and/or in deep water zone
 - And where there is Flow constrictions
- Smagorinsky formula is preferred (default)
 - (Varies coefficient based on velocity gradient)
- Some 2D schemes omit this term

Important Terms: Additional Energy Loss

- Energy dissipated as heat due to changes in velocity magnitude and/or direction
- Pronounced at
 - Bends
 - Flow constrictions (structures)
 - Basement floors
 - Subway stations
 - Bridge piers
 - 3D effects
 - Expansion losses at Vena Contracta
- Represented as "Form loss" coefficient
 - Proportion of dynamic head (V²/2g) lost
 - Usually it would be a calibration parameter

Layered Blockage

1D Manhole & 2D Linking

Link to Invert: Culvert

1D Culvert & 2D Linking

1D River & 2D Linking

- Create 1d/2d interface line along river banks
- Connect 1d nodal point to 1d/2d interface line

Modelling Buildings?

Modelling Buildings Block Cells Out

-	•••••••••••••••••••••••••••••••••••••••

	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
0 1 2 7	and the second
0.137m	
• • • • • • • • • • • • • • • • • • •	
	· · · · · · · · · · · · · · · · · · ·
///	· · · · · · · · · · · · · · · · · · ·
///	· · · · · · · · · · · · · · · · · · ·
	~~~~
	~~~~
1 9	m/s
	## <mark>#}}}````````````````````````````````</mark>
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<u>······</u>	

Modelling Building Walls Blocked/Open Upstream

Modelling Building Roughened Up (n = 0.3)

· · · · · · · · · · · · · · · · · · ·	
	<i>^,</i>
	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>
	, , , , , , , , , , , , , , , , , , ,
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* - * - * - * - * - * - * - * - * - * -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
* -* -* -* -* -* -* -* -* -* -* -* -* -*	141m/s
	· · · · · · · · · · · · · · · · · · ·

## Modelling Building Porous (Blockage = 90%)

Energy Loss (0.1*V²/2g)

► - ► - ► - ► - ► - ► - ► - ► - ► - ► -	<u> </u>	*****	********	• • • • • • • • • • • • • • • • • • •
·	93%	****	<u>*************************************</u>	
·	× 7. <del>3 3 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 </del>		<b>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </b>	
, , , , , , , , , , , , , , , , , , ,	/	**************************************	<u></u>	
	· · · · · · · · · · · · · · · · · · ·	▶ ▶ <i>▶ , , , , , , , , , , , , , , , , ,</i>		
<b>U.TO</b> / <b>W</b>	<b>1.28m/s</b>	► ► ► · · · · · · · · · · · · · · · · ·		
		▶ <b>▶</b> ► \ \ \		-+ -+ -+ -+ -+ -+ -+ -+ -+
		strannan	<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	- <del> </del>
	1.78m/s	<del>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</del>	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·			
	• • • • • • • • • • • • • • • • • • •	<u> </u>	<u> </u>	





 Proper Breaking condition setting is essential

## Levee/Dam/Fence Break

PART STATE GARCING POLI	n Shape (Pol		11111		7	
ine Type D Thin	<b>0</b> T	hick Width	10.	2216) 271 62		
Frigger By:	NAMES AND	2012/06/201	ARA SIA Nomini d			
Start Time		hours			200	
Water Level A	t Trigger Poi	nt0 at	Value	42.85		
Water Level D	ifference bet	ween Trigger				
and Trigger	Processor	at Value	0.0			
	Pares 22.97					
Depth 0	0					
Difference in	Depth 0.0	0.95				
Lower where	current elevat	10 11 B CO 17 10 T	r			
Cower where Raise where o Change all ele	current elevat urrent elevati vations	10 11 B CO 17 10 T	r			
Cower where Raise where o Change all ele	current elevat urrent elevati vations levation	10 11 B CO 17 10 T	r			
<ul> <li>Lower where</li> <li>Raise where of</li> <li>Change all ele</li> <li>Change all ele</li> <li>Constant Elev</li> </ul>	current elevat urrent elevati vations levation	10 11 B CO 17 10 T	r			
<ul> <li>Lower where</li> <li>Raise where of</li> <li>Change all ele</li> <li>Change all ele</li> <li>Constant Elev</li> </ul>	current elevat urrent elevati vations levation	10 11 B CO 17 10 T	r			
Lower where     Raise where     Change all ele     Constant Elev     Variable     X     293293.56	current elevati vations levation ation 41.5	ons are lower				
Cower where Raise where o Change all ele Final Perimeter E Constant Elev Variable	current elevati vations levation ation 41.5 Y 6 6178078.7	ons are lower				
Lower where     Raise where     Change all ele     Change all ele     Constant Elev     Variable     X     1 293293.56     2 293305.96	current elevati vations levation ation 41.5 <b>Y</b> 6 6178078.7 5 6178075.9	ons are lower <b>Z(DTM)</b> 46 41.417				
1 293293.56	current elevati vations levation ation 41.5 <b>Y</b> 6 6178078.7 5 6178075.9	Z(DTM)           '46         41.417           '38         41.460           0.0         0.0				





# **XP2D Application** 100s of Project Done

XJ solutions

## Case Study: NSW, Australia

27

#### **Fully developed Urban Area**

Total number of Node/Pit –284 Total number of Sub Catchment –285 (130 ha) Total 2D Cell Count – 379805 2D Cell size – 3m X 3m Max overland velocity – 5m/s Storm Events 5yr, 20yr, 50yr, 100yr and PMP



## Case Study: QLD, Australia

#### **Rural Mining Area**

Node –Total 300 (active) Link – Culvert: 10, Channels: 202 Node with User Inflow– Total 95 2D Cell –Total 907481 (Cell size 20m) 2D Head Boundary – 1 (free outfall) 2D Flow Boundary - None

(Existing Condition for Q1000, 18hr event)

## Case Study: Sendai, Japan

#### Costal Area – Tsunami Model

(East Japan Tsunami 2011)

