擁壁の設計 サンプルデータ

詳細出力例

AUTOKUI1

「 逆T式擁壁 」の杭基礎の計算例

目次	
1章 設計条件	1
1.1 一般事項	1
1.2 適用基準	1
1.3 形式	1
1.4 形状寸法	1
1.5 使用材料	1
1.6 土砂	2
1.7 載荷荷重	3
1.8 その他荷重	3
1.9 水位	3
1.10 浮力	3
1.11 土圧	3
1.12 水圧	4
1.13 基礎の条件	4
1.13.1 杭の基本データ	4
1.13.2 杭本体データ	5
1.13.3 フーチング厚さ照査用データ	5
1.14 安定計算の許容値及び部材の許容応力度	5
1.14.1 杭の許容支持力	5
1.14.2 安定計算の許容値	7
1.14.3 部材の許容応力度	7
2章 安定計算	9
2.1 水位を考慮しないブロックデータ	9
2.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力、水平力	10
2.3 地表面の載荷荷重,雪荷重	12
2.4 土圧・水圧	12
2.5 作用力の集計	13
2.6 安定計算結果	15
2.6.1 杭の設計条件	15
2.6.2 杭の配置	15
2.6.3 水平方向地盤反力係数	16
2.6.4 地盤のバネ定数	17
2.6.5 杭反力および変位量の計算	18
2.6.6 地中部断面力	19
2.6.7 杭の安定計算結果	21
2.6.8 抵抗モーメント	21
2.6.9 杭本体の設計(許容応力度法)	22
2.6.10 フーチング厚さの照査	23
3章 竪壁の設計	24
3.1 竪壁基部の設計	24
3.1.1 水位を考慮しないブロックデータ	24
3.1.2 躯体自重 , その他荷重	24
3.1.3 土圧・水圧	24
3.1.4 断面力の集計	25
3.1.5 断面計算(許容応力度法)	26
4章 つま先版の設計	29
4.1 照査位置[1]の設計	29
4.1.1 水位を考慮しないブロックデータ	29
4.1.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力	30

4.1.3 杭反力	31
4.1.4 断面力の集計	32
4.1.5 断面計算(許容応力度法)	32
4.2 照査位置[2]の設計	33
4.2.1 水位を考慮しないブロックデータ	34
4.2.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力	35
4.2.3 杭反力	36
4.2.4 断面力の集計	36
4.2.5 断面計算(許容応力度法)	37
4.3 照査位置[3]の設計	38
4.3.1 水位を考慮しないブロックデータ	38
4.3.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力	39
4.3.3 杭反力	40
4.3.4 断面力の集計	41
4.3.5 断面計算(許容応力度法)	41
5章 かかと版の設計	43
5.1 照査位置[1]の設計	43
- 5.1.1 水位を考慮しないブロックデータ	43
5.1.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力	44
5.1.3 地表面の載荷荷重,雪荷重	45
5.1.4 土圧	45
5.1.5 杭反力	47
5.1.6 断面力の集計	48
	48
5.1.7 断面計算(許容応力度法)	40 49
5.2 照査位置[2]の設計 5.2.1 水位を考慮しないブロックデータ	50
5.2.2 水位を考慮するブロックデータ	51
5.2.3 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力	51
5.2.4 地表面の載荷荷重,雪荷重 5.2.5 土圧	54 54
	54
5.2.6 杭反力	58
5.2.7 断面力の集計 5.2.8 断面力の集計	58
5.2.8 断面計算(許容応力度法)	59
5.3 照査位置[3]の設計	60
5.3.1 水位を考慮しないブロックデータ	60
5.3.2 水位を考慮するブロックデータ	61
5.3.3 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力	62
5.3.4 地表面の載荷荷重,雪荷重	64
5.3.5 土圧	64
5.3.6 杭反力	68
5.3.7 断面力の集計	69
5.3.8 断面計算(許容応力度法)	69
5.4 照査位置[4]の設計	70
5.4.1 水位を考慮しないブロックデータ	71
5.4.2 躯体自重,土砂重量,その他荷重,浮力(揚圧力)による鉛直力	72
5.4.3 地表面の載荷荷重,雪荷重	73
5.4.4 土圧	73
5.4.5 杭反力	75
5.4.6 断面力の集計	75
5.4.7 断面計算(許容応力度法)	76

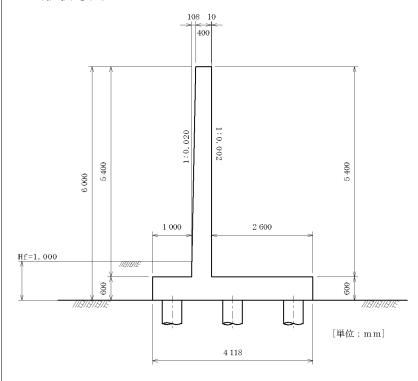
1章 設計条件

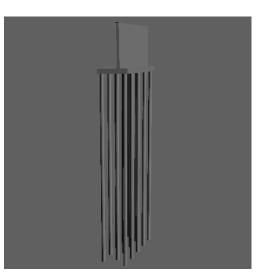
1.1 一般事項

データ名: AUTOKUI1.f8r (コメント: 逆T型-A 形状自動決定 杭基礎)

タイトル: 逆T型-A サンプルデータ

コメント: 逆T型-A 形状自動決定 杭基礎


1.2 適用基準


(社)日本道路協会、道路橋示方書・同解説 下部構造編 平成14年3月

1.3 形式

『逆T型 - A(杭基礎)』

1.4 形状寸法

奥行方向幅(ブロック長) B = 10000(mm)

1.5 使用材料

【コンクリート】 竪壁(鉄筋コンクリート): ck = 30 (N/mm²)

底版 (鉄筋コンクリート): ck = 30 (N/mm²)

【鉄 筋】 種 類: SD295

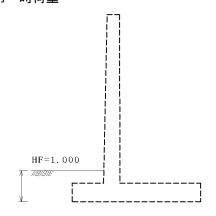
【 内部摩擦角 】 背面 土砂: 35.00 (度)

【単位体積重量】

 (kN/m^3)

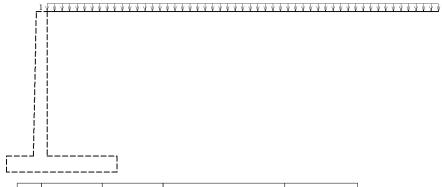
躯体	鉄筋コンクリート 24.500		
水 浮力算出用 10.000			.000
	土 砂	湿潤重量	飽和重量
	背 面	19.000	19.500
	前 面	14.000	15.000

1.6 土砂


(1)背面土砂形状

擁壁天端と地表面始点のレベル差	(m)	0.000
土圧を考慮しない高さHr	(m)	0.000

(2)前面土砂形状

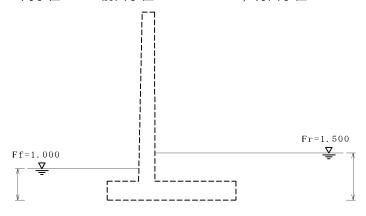

[1]常 時荷重

高さ	安定計算		フま元		つま先版
同C	鉛直力	水平力	の設計時		
1.000	考慮	無視	考 慮		

1.7 載荷荷重

[1]常 時荷重

釆	載荷位置	載荷幅	荷重強度	(kN/m²)	有效	力な核	負討
番号		単以1円 IP田 (M)	始端側	終端側	安定	竪壁	底版
1	0.000		10.000	10.000			


1.8 その他荷重

考慮しない

1.9 水位

[1]常 時荷重

高水位 : 前面水位Ff = 1.000 m, 背面水位Fr = 1.500 m

1.10 浮力

・揚圧力として浮力相当分を考慮する

1.11 土圧

・土圧の作用面の壁面摩擦角(度)

荷状	重	主働土圧			受働土圧
大	態	安定計算時	断面計算時	切土	文側上圧
常	時	35.000	23.330		

- ・安定計算時の土圧の仮想背面は、かかと端(かかとから鉛直に伸ばした線)
- ・安定計算時の土圧作用面が鉛直面となす角度 0.000 (度)
- ・竪壁設計時の土圧作用面が鉛直面となす角度 0.106 (度)
- ・粘着力(kN/m²)

荷 状	重態	すべり面用	粘着高さ用
常	時	0.000	0.000

・水位以下の土圧算出時の地震時慣性力は設計水平震度を適用

1.12 水圧

・静水圧の取扱い

荷重状態	背面	前面
常時	無視	無視

1.13 基礎の条件

1.13.1 杭の基本データ

(1)共通データ

杭 頭 条 件	剛結
杭 先 端 条 件	ヒンジ
杭 の 種 類	鋼管杭
施工方法	打込み(打撃工法)
杭先端バネ定数(せん断) (kN/m)	
杭先端バネ定数(回転) (kNm/rad)	
杭軸方向バネ定数 K _ν (kN/m)	104924.196
杭設計用軸力 (Pmin > 0の時)	Pmin
杭の断面計算に用いるモーメント	着目点の最大曲げモーメント

(2)地盤データ

・着目点ピッチ 2.000 (m)

番号	層厚	E (kN/m²)		E (kN/m²)	
号	(m)	常時	地震時		
1	5.000	5600.000	11200.000		
2	15.000	28000.000	56000.000		
3	5.000	120400.000	240800.000		

1.13.2 杭本体データ

 ·杭 径(直 径) D
 500.0 (mm)

 ·錆 代 (外 側) Do
 2.0 (mm)

 ·錆 代 (内 側) Ds
 0.0 (mm)

・ヤング 係 数 Ec 20.00×10⁴ (N/mm²)

断面	鋼材材質	板厚t(mm)	杭長(m)
1	SKK490	8.0	25.000

1.13.3 フーチング厚さ照査用データ

フーチングのヤング係数	×	10⁴	(N/mm^2)	2.800
フーチング厚さ上限値(土	圧巾	區 - 竪:	壁厚) / n	10.00

1.14 安定計算の許容値及び部材の許容応力度

1.14.1 杭の許容支持力

(1)杭の諸元

杭 長:L = 25.000 (m)

杭の種類:支持杭

(2)許容押込み支持力の計算

$$Ra = \frac{\gamma}{n} \cdot Ru$$

Ru = qd·A + U· (Li·fi) (常 時) Ru = qd·A + U· (Li·fi·DE) (地震時)

Ra: 杭頭における杭の軸方向許容押込み支持力(kN)

n : 安全率 3.0(常時) 2.0(地震時)

: 極限支持力推定法による安全率の補正係数 1.0

Ru: 地盤から決まる杭の極限押込み支持力(kN)

qd: 杭先端で支持する単位面積当たりの極限支持力度(kN/m²)

A : 杭先端面積(m²)

$$A = \frac{\pi}{4} \cdot 0.5000^2 = 0.196 \text{ (m}^2\text{)}$$

<u>支持層への換算根入れ深さ</u> 杭径 = 3.00

設計N値 = 40.0

$$\frac{\mathrm{qd}}{\mathrm{N}} = 220.0$$

 $qd = 220.0 \cdot 40.0 = 8800.0 (kN/m²)$

U : 杭の周長(m)

$$U = 0.5000 = 1.571 (m)$$

Li : 層厚(m)

fi: 層の最大周面摩擦力度(kN/m²)

DE: 低減係数

1) 常時

周面摩擦力および杭で置き換えられる部分の土の有効重量

層 No	土質	平均 N値	層厚 Li(m)	i (kN/m³)	Ws (kN)	fi (kN/m²)	Li•fi (kN)
1	砂質土	2.0	5.000	10.00	9.817	0.0	0.0
2	砂質土	10.0	15.000	10.00	29.452	50.0	750.0
3	砂質土	43.0	5.000	10.00	9.817	100.0	500.0
計			25.000		49.087		1250.0

地盤から決まる極限押込み支持力

Ra =
$$\frac{\gamma}{n}$$
 • Ru
= $\frac{1.0}{3.0}$ • 3691.371 =1230.457 (kN)

2) 地震時

周面摩擦力および杭で置き換えられる部分の土の有効重量

層 No	土質	平均 N値	層厚 Li(m)	i (kN/m³)	Ws (kN)	fi (kN/m²)	DE	Li·fi·DE (kN)
1	砂質土	2.0	5.000	10.00	9.817	0.0	1.000	0.0
2	砂質土	10.0	15.000	10.00	29.452	50.0	1.000	750.0
3	砂質土	43.0	5.000	10.00	9.817	100.0	1.000	500.0
計			25.000		49.087			1250.0

地盤から決まる極限押込み支持力

Ra = $\frac{\gamma}{n}$ • Ru = $\frac{1.0}{2.0}$ • 3691.371 =1845.686 (kN)

(3)許容引抜き力の計算

$$Pa = \frac{1}{n} \cdot Pu$$

$$Pu = U \cdot (Li \cdot fi)$$

Pa: 杭頭における杭の軸方向許容引抜き力(kN)

n : 安全率 6.0(常時) 3.0(地震時) Pu: 地盤から決まる杭の極限引抜き力(kN)

許容引抜き力

1) 常時

地盤から決まる極限引抜き力

$$Pu = U \cdot \Sigma Li \cdot fi$$

$$= 1.571 \cdot 1250.0 = 1963.495 \text{ (kN)}$$

許容引抜き力

$$Pa = \frac{1}{n} \cdot Pu$$

= $\frac{1}{6.0} \cdot 1963.495 = 327.249$ (kN)

2) 地震時

地盤から決まる極限引抜き力

$$Pu = U \cdot \Sigma Li \cdot fi$$

$$= 1.571 \cdot 1250.0 = 1963.495 \text{ (kN)}$$

許容引抜き力

$$Pa = \frac{1}{n} \cdot Pu$$

= $\frac{1}{3.0} \cdot 1963.495 = 654.498$ (kN)

1.14.2 安定計算の許容値

荷重状態	許容 変位量 (cm)	許容 押込力 (kN)	許容 引抜力 (kN)
常 時荷重	1.50	1230.457	-327.249

1.14.3 部材の許容応力度

(1)鉄筋コンクリート部材

1) 竪壁(一般部材)

 (N/mm^2)

荷 重 割増 コンクリート の圧縮応力度		鉄筋の 引張応力度 ೄ	せん 応力 a1			
常時	荷重	1.00	10.000	180.000	0.250	1.900

2) 底版(一般部材)

 (N/mm^2)

7 1	苛 重 伏 態	割増係数	コンクリート の圧縮応力度	鉄筋の 引張応力度 ೄ	せん 応力 a1	ル断 D度 a2
常	時荷重	1.00	10.000	180.000	0.250	1.900

ここに、

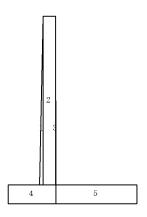
at : コンクリ - トのみでせん断力を負担する場合のせん断応力度

』: 斜引張鉄筋と協同して負担する場合のせん断応力度

(2)その他の部材

1) 基礎(一般部材)

 (N/mm^2)

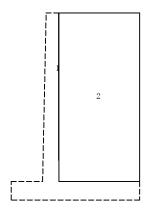

花北	荷 重 割増 圧 縮 状 態 係数 応力度		圧 縮 応力度	引 張 応力度	せん断 応力度
常時荷重		1.00	185.000	185.000	105.000

2章 安定計算

2.1 水位を考慮しないブロックデータ

(1)躯体自重

1)ブロック割り

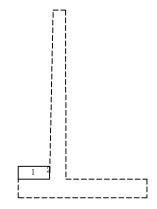


2)自重・重心

区分	計算式	体積	重心位置(m)		Vi • Xi	Vi • Yi	備考
分	幅 x 高さ x 奥行	Vi(m³)	Xi	Yi	۷۱۰۸۱	VITI	MH. 与
1 2 3 4 5	1/2× 0.108× 5.400× 1.000 0.400× 5.400× 1.000 1/2× 0.010× 5.400× 1.000 1.518× 0.600× 1.000 2.600× 0.600× 1.000	0.292 2.160 0.027 0.911 1.560	1.072 1.308 1.511 0.759 2.818	2.400 3.300 2.400 0.300 0.300	0.313 2.825 0.041 0.691 4.396	0.700 7.128 0.065 0.273 0.468	
		4.949			8.266	8.634	

(2)背面土砂

1)ブロック割り



2)体積・重心

区分	計算式	体積	重心位置(m)		Vi • Xi	Vi • Yi	備考
分	幅 x 高さ x 奥行	Vi(m³)	Xi	Yi	VI - XI	V 1 • 1 1	佣巧
1	1/2× 0.010× 5.400× 1.000 2.600× 5.400× 1.000	0.027 14.040	1.515 2.818	4.200 3.300	0.041 39.565	0.113 46.332	

区分	計算式 幅 × 高さ × 奥行	体積	重心位置(m)		Vi • Xi	Vi • Yi	備考
分		Vi(m³)	Xi	Yi	VI • XI	VITI	m 5
		14.067			39.606	46.445	

- (3)前面土砂
 - [1]常 時荷重
 - 1)ブロック割り

2)体積・重心

区分	計算式	体積	重心位置(m)		Vi • Xi	Vi • Yi	備考
分	幅 × 高さ × 奥行	Vi(m³)	Xi	Yi	VI · XI	VISTI	佣石
1 2	1.000 × 0.400 × 1.000 1/2 × 0.008 × 0.400 × 1.000	0.400 0.002	0.500 1.003	0.800 0.867	0.200 0.002	0.320 0.001	
		0.402			0.202	0.321	

- 2.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力、水平力
 - (1)自重による作用力
 - [1]常 時荷重

位	置	鉛直力 W = ・ V (kN)	作用位置 X (m)
躯	体	24.500 × 4.949 = 121.260	1.670

(2)土砂重量,浮力

[1]常 時荷重 (低水位)

1)土砂重量による作用力

水位位置による分割

	全体積、重心位置			水位より下の体積、重心位置		
位 置	体 積	重心位	江置(m)	体 積	重心位	过置(m)
	V (m ³)	X	Y	VI (m³)	ΧI	ΥI
土砂(背面) 土砂(前面)	14.067 0.402	2.815 0.502	3.302 0.800	0.000 0.000	0.000 0.000	0.000 0.000

	水位より上の体積、重心位置			
位 置	体 積	重心位置(m)		
	Vu (m³)	Xu	Yu	
土砂(背面) 土砂(前面)	14.067 0.402	2.815 0.502	3.302 0.800	

水位より上の体積

Vu = V - VI

水位より上の重心位置

 $Xu = (V \cdot X - VI \cdot XI) / Vu$ $Yu = (V \cdot Y - VI \cdot YI) / Vu$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)
土砂(背面)	14.067 × 19.000 = 267.273	0.000 × 19.500 = 0.000
土砂(前面)	0.402 × 14.000 = 5.622	0.000 × 15.000 = 0.000

位置	重量 W Wu + WI (kN)	作用位置 X (Wu·Xu+WI·XI)/W (m)
土砂(背面)	267.273	2.815
土砂(前面)	5.622	0.502

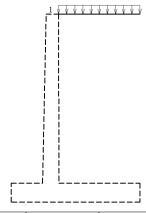
(3)自重集計

[1]常 時荷重 (低水位)

	重 量 Ni	水平力 Hi	作用位	之置(m)	モーメン	├(kN.m)
	(kN)	(kN)	Xi	Yi	Ni • Xi	Hi • Yi
躯 体	121.260	0.000	1.670	0.000	202.519	0.000
背面土砂	267.273	0.000	2.815	0.000	752.506	0.000
前面土砂	5.622	0.000	0.502	0.000	2.822	0.000
合 計	394.155	0.000			957.846	0.000

2.3 地表面の載荷荷重,雪荷重

鉛直力


$$N = \frac{1}{2} \cdot (q1 + q2) \cdot L$$

ここに、

q : 載荷荷重強度 L : 載荷荷重長さ

X: つま先位置から合力作用点までの距離

[1]常 時荷重

番号	q1 (kN/m²)	q2 (kN/m²)	L (m)	鉛直力 N (kN)	作用位置 X (m)
1	10.000	10.000	2.610	26.100	2.813

2.4 土圧・水圧

[1]常 時荷重 (低水位)

土圧は試行くさび法により求める。

仮想背面の位置(つま先からの距離) xp = 4.118 m

yp = 0.000 m

仮想背面の高さ H = 6.000 m

仮想背面が鉛直面となす角度 = 0.000 °

背面土砂の単位体積重量 s = 19.000 kN/m³

背面土砂の内部摩擦角 = 35.00°

壁面摩擦角 = 35.000 °

i = 10.00 ° ~ 80.00 °

すべり角()に対する土砂重量(W), 土圧力(P)

水位 hw = 0.000 m

すべり角		土圧力			
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
56.00	230.682	0.000	40.471	271.153	100.147
57.00	222.097	0.000	38.964	261.061	100.368
58.00	213.705	0.000	37.492	251.197	100.343

土圧力が最大となるのは、

である。

土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

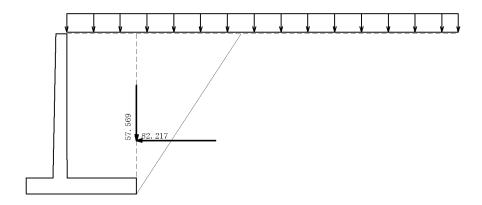
$$= \frac{261.061 \times \sin(57.00^{\circ} - 35.00^{\circ})}{\cos(57.00^{\circ} - 35.00^{\circ} - 0.000^{\circ} - 35.000^{\circ})}$$
= 100.368 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分

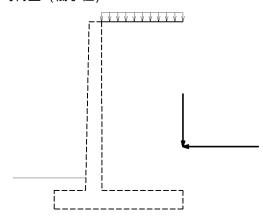
Ph =
$$P \cdot \cos(+) = 100.368 \times \cos(0.000 ^{\circ} + 35.000 ^{\circ}) = 82.217 \text{ kN}$$

鉛直成分


$$Pv = P \cdot sin(+) = 100.368 \times sin(0.000 \circ + 35.000 \circ) = 57.569 kN$$
作用位置

Ho =
$$\frac{H}{3}$$
 = $\frac{6.000}{3}$ = 2.000 m

$$x = xp - Ho \cdot tan = 4.118 - 2.000 \times tan 0.000 \circ = 4.118 m$$


$$y = yp + Ho = 0.000 + 2.000 = 2.000 m$$

・土圧図

2.5 作用力の集計

- (1)フーチング前面での作用力の集計
- [1]常 時荷重 (低水位)

項	目	鉛直力 水平力		鉛直力 水平力 アーム長		回転モーメント(kN.m)	
- 以	П	N _i (kN)	H _i (kN)	X, (m)	Y, (m)	$M_{xi} = N_i \cdot X_i$	$M_{yi} = H_i \cdot Y_i$
自	重	394.155	0.000	2.430	0.000	957.846	0.000
載荷、	、雪	26.100	0.000	2.813	0.000	73.419	0.000
土	圧	57.569	82.217	4.118	2.000	237.069	164.434
合	計	477.824	82.217			1268.335	164.434

荷重状態(水 位)	N₀	H₀	M₀
	(kN)	(kN)	(kN.m)
常 時荷重(低水位)	477.824	82.217	1103.901

(2)フーチング中心での作用力の集計

 鉛 直 力
 : N_c = N_c (kN)

 水 平 力
 : H_c = H_c (kN)

 回 転 モ ー メ ン ト
 : M_c = N_c · B_j / 2.0 - M_c (kN.m)

ここに、

フーチング土圧方向幅 : B_j = 4.118 (m)

単位幅当り

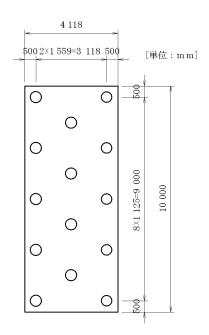
荷重状態(水 位)	N₀	H。	M₀
	(kN)	(kN)	(kN.m)
常 時荷重(低水位)	477.824	82.217	-120.060

全幅(10.000m)当り

荷重状態(水 位)	N₅	H₀	M₀
	(kN)	(kN)	(kN.m)
常 時荷重(低水位)	4778.243	822.170	-1200.603

2.6 安定計算結果

2.6.1 杭の設計条件


(1)基本データ

杭頭条件	剛結		
杭先端条件	ヒンジ		
杭の種類	鋼管杭		
施工方法	打込み(打撃工法)		
杭先端バネ定数(せん断)			
杭先端バネ定数(回 転)			
杭 長	25.000 (m)		
突出長	0.000 (m)		
外径	500.0 (mm)		
外側錆代 t1	2.0 (mm)		
内側錆代 t2	0.0 (mm)		
ヤング係数 E	20.0 × 10 ⁴ (N/mm ²)		

(2)断面データ

断面	1
鋼材材質	SKK490
板厚t(mm)	8.0
設計外径(mm) += -2・t+	496.0
設計内径(mm) ₂= -2・(t-t₂)	484.0
断面積(cm²) A = /4・(² - ²)	92.3628
断面係数(cm³) Z = /64·(14- 24)/(1/2)	1117.9248
断面二次モーメント(cm ⁴) I = /64・(⁴ - ⁴)	27724.5361

2.6.2 杭の配置

土圧方向 杭列数: 3列

列番号	位 置 Xi (m)	杭本数 Ni (本)	角 度 (度)	角度を もつ本数 (本)
1	1.559	5	0.0	0
2	0.000	4	0.0	0
3	-1.559	5	0.0	0

直角方向 杭列数: 9列

列番号	位 置 Zi (m)	杭本数 Ni (本)		
1	4.500	2		
2	3.375	1		
3	2.250	2		
4	1.125	1		
5	0.000	2		
6	-1.125	1		
7	-2.250	2		
8	-3.375	1		
9	-4.500	2		

2.6.3 水平方向地盤反力係数

$$Kh = KhO \left(\frac{Bh}{0.3}\right)^{-3/4}$$

$$KhO = \frac{1}{0.3} \cdot \alpha \cdot Eo$$

ここに、

Kh :水平方向地盤係数(kN/m³)

Kh0: 直径0.3mの剛体円板による水平載荷試験の値に相当する水平方向地盤反力係数(kN/m³)

: 地盤反力係数の推定に用いる係数

Eo :設計の対象とする位置での地盤の変形係数(kN/m²)

Bh: 荷重の作用方向に直交する基礎の換算載荷幅(m)。Bhを算定する際のKhは常時の値とし、設計地盤面から1/までの深さの平均的な値とする。

Bh =
$$\sqrt{D/\beta}$$
 = 1.196 (m)

$$1/ = 2.861576 (m)$$

$$\beta = \sqrt[4]{\frac{\mathrm{Kh} \cdot \mathrm{D}}{4 \cdot \mathrm{E} \cdot \mathrm{I}}} = 0.349458 \ (\mathrm{m}^{-1})$$

常時の1/ の範囲の平均値Kh = 6615.50879 (kN/m³)

1/: 水平抵抗に関する地盤の深さ(m)で、基礎の長さ以下とする。

:基礎の特定値(m-1)

D : 荷重方向に直交する基礎の載荷幅(m) D = 0.5000

E : 杭のヤング係数(kN/m²) E = 200000000.0 I : 杭の断面二次モーメント(m⁴) I = 0.000277245

			常時				地震時	
番号	層 厚 (m)	Eo	水平方向地	盤反力係数	DE	Eo	水平方向地盤反力係数	
	J (/	(kN/m²)	(N/cm³)	(kN/m³)		(kN/m²)	(N/cm³)	(kN/m³)
1	5.000	5600.000	6.616	6615.509	1.000	11200.000	13.231	13231.018

			常時			地震時		
番号	層 厚 (m)	Eo	水平方向地	盤反力係数	DE	Eo	水平方向地盤反力係数	
	J ()	(kN/m²)	(N/cm³)	(kN/m³)		(kN/m²)	(N/cm³)	(kN/m³)
2	15.000	28000.000	33.078	33077.544	1.000	56000.000	66.155	66155.089
3	5.000	120400.000	142.233	142233.441	1.000	240800.000	284.467	284466.882

2.6.4 地盤のバネ定数

(1)杭の軸方向バネ定数

$$K_{\text{V}} = a \cdot \frac{\text{Ap} \cdot \text{Ep}}{L} = 1049241.960 \quad (\text{N/cm}) = 104924.196 \quad (\text{kN/m})$$

ここに、

K_v : 杭の軸方向バネ定数

a :施工法別に杭の根入れ比(L/D)から決まる係数

 $a = 0.014 \cdot (L/D) + 0.720 = 1.420$

Ap : 杭の断面積 Ap = 0.0092 (m²)

Ep: 杭体のヤング係数 Ep = 200000.0000 (N/mm²)

L : 杭長 L = 25.0000 (m) D : 杭径 D = 0.5000 (m)

(2)杭の軸直角方向バネ定数

バネ定数	常時	地震時
K1 (kN/m)	9586.293	15978.933
K2 (kN/rad)	13890.704	19252.955
K3 (kN.m/m)	13890.704	19252.955
K4 (kN.m/rad)	40206.309	46731.016

K1, K3: 杭頭部に回転を生じないようにして、杭頭部を杭軸直角方向に単位量だけ 変位させるとき、杭頭に作用させるべき軸直角方向力(kN/m)および曲げモーメント(kN.m/m)

K2,K4:杭頭部に移動を生じないようにして、杭頭部を単位量だけ回転させるとき、 杭頭部に作用させるべき土圧直角方向力(kN/rad)および曲げモーメント (kN.m/rad)

2.6.5 杭反力および変位量の計算

(1)変位法による計算

```
Axx \cdot x + Axy \cdot y + Axa \cdot
                                        = Ho
Ayx • x + Ayy • y + Aya •
                                        = Vo
Aax \cdot x + Aay \cdot y + Aaa \cdot
                                        = Mo
Axx
                       (K1 \cdot cos^2 i + K_v \cdot sin^2 i)
Axy = Ayx =
                       (K_{\vee} - K1) \cdot \sin i \cdot \cos i
Axa = Aax =
                       \{(K_v - K1) \cdot X_i \cdot \sin i \cdot \cos i - K2 \cdot \cos i\}
Ayy
                       (K_v \cdot \cos^2 i + K1 \cdot \sin^2 i)
Aya = Aay = \{(K_v \cdot \cos^2 i + K1 \cdot \sin^2 i) \cdot X_i + K2 \cdot \sin i\}
             = {(K_v \cdot \cos^2 i + K_1 \cdot \sin^2 i) \cdot X_i^2 + (K_2 + K_3) \cdot X_i \cdot \sin i + K_4}
Aaa
```

ここに、

Ho : フーチング底面より上に作用する水平荷重(kN) Vo : フーチング底面より上に作用する鉛直荷重(kN) Mo : 原点0のまわりの外力のモーメント(kN.m)

x:原点0の水平変位量(m) y:原点0の鉛直変位量(m) :フーチングの回転角(rad)

X_i:i番目の枕の杭頭X座標(m)

i:i番目の杭の杭軸が鉛直軸となす角度(度)

常時
$$A = \begin{bmatrix} Axx & Axy & Axa \\ Ayx & Ayy & Aya \\ Aax & Aay & Aaa \end{bmatrix} = \begin{bmatrix} 1.34208E+005 & 0.00000E+000 & -1.94470E+005 \\ 0.00000E+000 & 1.46894E+006 & 2.91038E-011 \\ -1.94470E+005 & 2.91038E-011 & 3.11305E+006 \end{bmatrix}$$
$$= \begin{bmatrix} 8.19271E-006 & -1.01401E-023 & 5.11792E-007 \\ -1.01401E-023 & 6.80764E-007 & -6.99788E-024 \\ 5.11792E-007 & -6.99788E-024 & 3.53200E-007 \end{bmatrix}$$

$$A = \begin{bmatrix} Axx & Axy & Axa \\ Ayx & Ayy & Aya \\ Aax & Aay & Aaa \end{bmatrix} = \begin{bmatrix} 2.23705E+005 & 0.00000E+000 & -2.69541E+005 \\ 0.00000E+000 & 1.46894E+006 & 2.91038E-011 \\ -2.69541E+005 & 2.91038E-011 & 3.20440E+006 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 4.97433E-006 & -8.29010E-024 & 4.18421E-007 \\ -8.29010E-024 & 6.80764E-007 & -6.88034E-024 \\ 4.18421E-007 & -6.88034E-024 & 3.47267E-007 \end{bmatrix}$$

(2)杭頭変位

荷重状態(水 位)	水平変位	鉛直変位	回転変位
何里(()思()	(cm)	(cm)	(rad)
常 時荷重(低水位)	0.612	0.325	-0.00000327

(3)杭反力

[1]常 時荷重 (低水位)

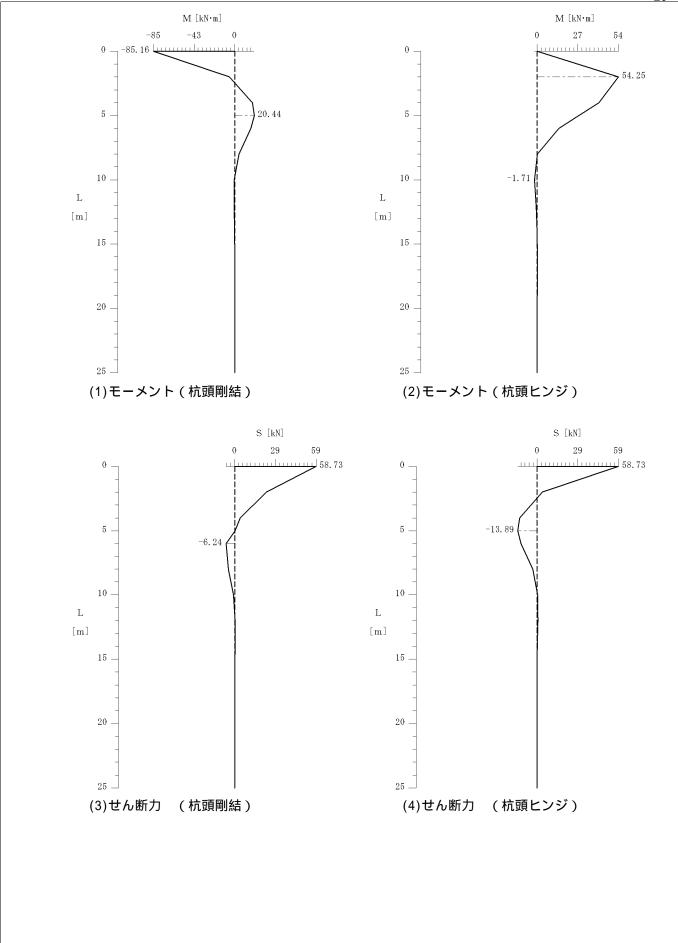
列番号	杭属性	PNi (kN)	PHi (kN)	Mti (kN.m)
1	直	340.768	58.726	-85.161
2	直	341.303	58.726	-85.161
3	直	341.838	58.726	-85.161

2.6.6 地中部断面力

[1]常 時荷重 (低水位)

1列目 (直杭)

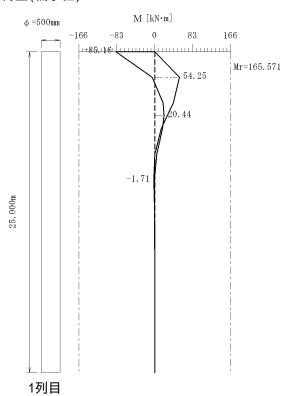
地中部(剛結) Mmax : 85.161 (kN.m) 深さ: 0.000 (m) 地中部(ヒンジ) Mmax : 54.250 (kN.m) 深さ: 2.000 (m)


最大モーメント Mmax : 85.161 (kN.m)

1/2Mmax: 42.581 (kN.m) 深さ: 3.774 (m)

最大せん断力 Smax : 58.726 (kN)

とんでいて	Sillax .	30.720	(KIV)				
<i>∞</i> →	バネ値	杭	頭剛	結	杭	頭 ヒン	ジ
深さ (m)	KH (kN/m²)	变位量 (cm)	M (kN.m)	S (kN)	变位量 (cm)	M (kN.m)	S (kN)
0.000	6616	-0.61	-85.161	58.726	-1.23	0.000	58.726
2.000	6616	-0.42	-5.660	22.963	-0.48	54.250	3.847
4.000	6616	-0.16	18.452	4.084	-0.08	41.095	-12.652
5.000	6616	-0.07	20.437	0.383	0.00	27.609	-13.890
6.000	33078	-0.02	16.768	-6.238	0.03	14.491	-11.567
8.000	33078	0.01	4.428	-4.534	0.02	0.232	-3.129
10.000	33078	0.01	-0.511	-0.829	0.00	-1.710	0.326
12.000	33078	0.00	-0.728	0.268	0.00	-0.632	0.502
14.000	33078	0.00	-0.194	0.197	0.00	-0.012	0.137
16.000	33078	0.00	0.022	0.037	0.00	0.075	-0.013
18.000	33078	0.00	0.032	-0.012	0.00	0.028	-0.022
20.000	33078	0.00	0.007	-0.011	0.00	-0.002	-0.009
22.000	142233	0.00	-0.002	0.000	0.00	-0.003	0.003
24.000	142233	0.00	0.000	0.000	0.00	0.000	0.000
25.000	142233	0.00	0.000	0.000	0.00	0.000	0.000



2.6.7 杭の安定計算結果

荷重状態(水 位)	変位量 (cm)		押込力	ı (kN)	引抜力 (kN)		
何里孙忠(小 位)	計算値	許容値	計算値	許容値	計算値	許容値	
常 時荷重(低水位)	0.612	1.50	341.838	1230.457	340.768 >	-327.249	

2.6.8 抵抗モーメント

[1]常 時荷重(低水位)

3列目

断面	列	杭	検 討	М	N	抵抗モーメ	ソト(kN.m)
断面番号	列番号	属性	ケース	(kN.m)	(kN)	計算值	位置(m)
1	3	直	圧大	85.161	341.838	165.441	
	1	直	引大	85.161	340.768	165.571	

圧大:圧縮応力度最大時、引大:引張応力度最大時

2.6.9 杭本体の設計(許容応力度法)

(1)曲げモーメントの照査

$$\sigma = \frac{N}{A} \pm \frac{M}{Z}$$

ここに、

: 杭体に生じる曲げ応力度(N/mm²)

N : 杭の軸力(N)

A : 杭の有効断面積(mm²), A = 9236.28

M :曲げモーメント(N.mm)

Z:杭の有効断面係数(mm²), Z = 1117.9×10³

	列	杭	ね金章寸	М	N	圧縮応力度(N/mm²)		引張応力度(N/mm²)	
荷重状態(水 位)	列番号	杭属性	検討 状態	(kN.m)	(kN)	計算值	許容値	計算値	許容値
常 時荷重(低水位)	3	直	圧大	85.161	341.838	113.188	185.000	-39.168	185.000
	1	直	引大	85.161	340.768	113.073	185.000	-39.284	185.000

圧大:圧縮応力度最大時、引大:引張応力度最大時

(2)せん断力に対する照査

$$au \; = \; rac{Q}{A} \; \leqq \; au_{\, al}$$

ここに、

: せん断応力度(N/mm²)

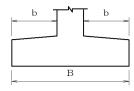
Q : せん断力(N)

A : 断面積(mm²), A = 9236.28 a1: 許容せん断応力度(N/mm²)

	列	杭属	せん断力	せん断応	力度(N/mm²)
荷重状態(水 位)	列番号	属性	(kN)	計算値	許容値a1
常 時荷重(低水位)	1	直	58.726	6.358	105.000

2.6.10 フーチング厚さの照査

(1) ・ による判定


• 1.0

ここに、

$$\beta = \sqrt[4]{\frac{3 \cdot k_p}{E \cdot h^3}} (m^{-1}), \quad \beta = 0.364718$$

k。: 換算地盤反力係数(kN/m³)

$$k_p = \frac{\sum K_V}{L \cdot B} = 35671.168$$

K_v:1本の杭の軸方向バネ定数(kN/m), K_v = 104924.196

B : フ - チングの幅(m), B = 4.118 L : フ - チングの奥行き(m), L = 10.000 n : 杭の列数, n = 3

m : 杭の行数, m = 9 n·m: 杭の本数(千鳥配置の場合は本数), n·m = 14

n・m:ftの本数(十鳥配置の場合は本数), n・m = 14 E :フ‐チングのヤング係数(kN/m²), E = 2.80×10⁷

h : フ - チングの厚さ(m) , h = 0.600 : フ - チングの換算突出長(m) , = 2.059

= b(bは上図の長い方)

ただし、b B/2 ならば b = B/2

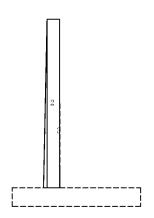
(2)フーチング厚さの上限値(土圧方向幅-竪壁の厚さ)/nによる判定

FH₁ FH₂

ここに、

FH₁:フ-チングの厚さ(m), FH₁ = 0.600

FH₂:剛体であると判定する厚さ(m), FH₂ = 3.600/10.000 = 0.360


(3)照査結果

(1) ・ による判定	(2)フーチング厚さの 上限値による判定	総合判定
フーチングは	フーチングは	(1)または(2)を満足しているので
剛体と見なせる	剛体と見なせる	フーチングは剛体として設計してよい

3章 竪壁の設計

3.1 竪壁基部の設計

- 3.1.1 水位を考慮しないブロックデータ
 - (1)ブロック割り

(2)体積・重心

	計算式	体積	重心位	位置(m)			
分	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Vi (m³)	Xi	Yi	Vi • Xi	Vi • Yi	備考
1 2 3	1/2× 0.108× 5.400× 1.000 0.400× 5.400× 1.000 1/2× 0.010× 5.400× 1.000	0.292 2.160 0.027	0.072 0.308 0.511	1.800 2.700 1.800	0.021 0.665 0.014	0.526 5.832 0.049	
		2.479			0.700	6.406	

重心 XG =
$$(Vi \cdot Xi)$$
 / Vi = 0.700 / 2.479 = 0.282 (m) YG = $(Vi \cdot Yi)$ / Vi = 6.406 / 2.479 = 2.584 (m)

3.1.2 躯体自重,その他荷重

- (1)躯体自重
- [1]常 時荷重

位 置	W = • V (kN)	作用位置 X (m)
躯体(鉄筋)	24.500 × 2.479 = 60.736	-0.023

3.1.3 土圧・水圧

[1]常 時荷重 (低水位)

土圧は試行くさび法により求める。

仮想背面の位置(断面中心からの距離) xp = 0.259 m

yp = 0.000 m

仮想背面の高さ H = 5.400 m

仮想背面が鉛直面となす角度 = 0.106 °

背面土砂の単位体積重量 s = 19.000 kN/m³

背面土砂の内部摩擦角 = 35.000 ° = 32.220 °

壁面摩擦角 = 23.330 °

$$i = 10.00 ^{\circ} \sim 80.00 ^{\circ}$$

すべり角()に対する土砂重量(W),土圧力(P)

水位 hw = 0.000 m

すべり角		土砂重量	를 W(kN)		土圧力
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
58.00	173.614	0.000	33.843	207.457	81.062
59.00	166.963	0.000	32.546	199.509	81.152
60.00	160.451	0.000	31.277	191.728	81.058

土圧力が最大となるのは、

である。

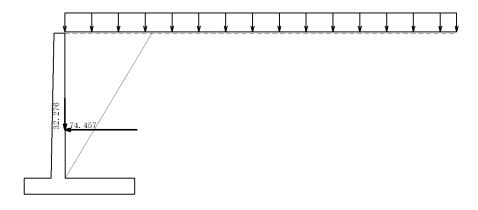
土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

$$= \frac{199.509 \times \sin(59.00^{\circ} - 35.00^{\circ})}{\cos(59.00^{\circ} - 35.00^{\circ} - 0.106^{\circ} - 23.330^{\circ})}$$
= 81.152 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分

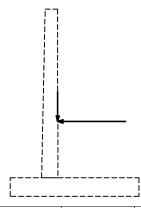

$$Ph = P \cdot cos(+) = 81.152 \times cos(0.106° + 23.330°) = 74.457 kN$$
 鉛直成分

 $Pv = P \cdot sin(+) = 81.152 \times sin(0.106 ^ + 23.330 ^) = 32.276 kN$ 作用位置

Ho =
$$\frac{H}{3}$$
 = $\frac{5.400}{3}$ = 1.800 m

$$x = Ho \cdot tan - xp = 1.800 \times tan0.106 ^{\circ} - 0.259 = -0.256 m$$

 $y = yp + Ho = 0.000 + 1.800 = 1.800 m$


・土圧図

3.1.4 断面力の集計

(偏心モーメント及び軸力を無視するため鉛直力は集計されません)

[1]常 時荷重 (低水位)

項	目	N _i (kN)	H. (kN)	X, (m)	Y, (m)	$M = M_{xi} + M_{yi}$ (kN.m)
自	重	60.736	0.000	-0.023	0.000	0.000
土	圧	32.276	74.457	-0.256	1.800	134.023
合	計	0.000	74.457			134.023

Xi は設計断面中心からの距離(前面側に向かって+)、Yi は設計断面からの高さ

3.1.5 断面計算(許容応力度法)

(1)鉄筋配置

信置	立置	かぶり (cm)	鉄 筋 径	鉄筋面積 (cm²/本)	本 数	鉄筋量 (cm²)
前面	1'		_			
面	2'					
背面	1	7.0	D25	5.067	4.00	20.268
面	2		_			

引張側必要鉄筋量 18.433 (cm²)

(2)曲げ応力度の照査

(参考)

中立軸の算出

$$x^2 + \frac{2 \cdot n}{b} \left\{ As \cdot (x-d) \right\} = 0.0$$
 よりxを求める。

応力度の算出

$$\sigma_{\circ} = \frac{M}{\frac{b \cdot x}{2} \cdot \left(\frac{h}{2} - \frac{x}{3}\right) + n \cdot As \cdot \frac{(x-d) \cdot (h/2 - d)}{x}}$$

$$\sigma_{\circ} = n \cdot \sigma_{\circ} \cdot \frac{d - x}{x}$$

ここに、

x :コンクリートの圧縮縁から中立軸までの距離(mm)

h :部材断面の高さ(mm), h = 518.000 b :部材断面幅(mm), b = 1000.000

d :部材の有効高(mm)

As : 引張側鉄筋の全断面積(mm²)

n : 鉄筋とコンクリートのヤング係数比, n = 15.00

e:部材断面の図心軸から軸方向力の作用点までの距離(mm)

c:コンクリートの曲げ圧縮応力度(N/mm²)

s:鉄筋の引張応力度(N/mm²) M:曲げモーメント(N.mm)

7	芸書 保能 (み ・	М	N	x 圧縮応力度(N/mm²) 引張応力度(N		圧縮応力度(N/mm²)		隻(N/mm²)
1	荷重状態(水 位)	(kN.m)	(kN)	(cm)	計算值 許容値		計算値	許容値
常	時荷重(低水位)	134.023	0.000	13.747	4.851	10.000	164.387	180.000

(3)せん断応力度の照査

$$\tau_{\text{m}} = \frac{S_{\text{h}}}{\text{h} \cdot d} \leq \tau_{\text{al}}$$

ここに、

』: コンクリートの平均せん断応力度(N/mm²)

S_h: せん断力(N)

d :部材断面の有効高(mm)

b :部材断面幅(mm)

a: 割増しされた許容せん断応力度(N/mm²)

$$_{a1}$$
 = Ce · Cpt · CN · $_{a1}$ '

$$CN = 1 + \frac{M_{\circ}}{M} \quad (1 \le CN \le 2)$$

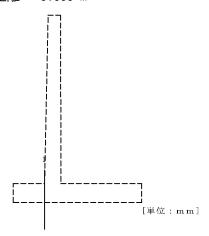
ここに、

a1:コンクリートのみでせん断力を負担する場合の許容せん断応力度(N/mm2)

Ce : 部材断面の有効高に関する補正係数 Cpt : 引張主鉄筋比Ptに関する補正係数

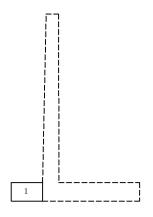
CN:軸方向圧縮力による補正係数

M。: 軸方向圧縮力によりコンクリートの応力度が部材引張縁で零となる


曲げモーメント(kN.m)

	荷重状態(水 位)	せん断力	有効高	<i>せ/</i>	υ断応力度(N/mm	m²)	袝	非正係数	ጳ
	19里状态(小 位)	S₁(kN)	d(cm)	計算値	許容値 a 計	汗容値 a2	Се	Cpt	CN
常	古 時荷重(低水位)	74.457	44.800	0.166	0.379	1.900	1.32	1.15	1.00

4章 つま先版の設計

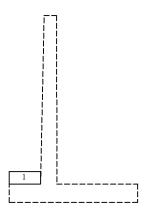

4.1 照査位置[1]の設計

付け根からの距離 = 0.000 m

4.1.1 水位を考慮しないブロックデータ

- (1)躯体自重
- 1)ブロック割り

2)自重・重心


区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	1.000 × 0.600 × 1.000	0.600	0.500	0.300	
		0.600		0.300	

重心位置 XG = (Vi・Xi) / Vi = 0.300/0.600 = 0.500 (m)

(2)前面土砂

[1]常 時荷重

1)ブロック割り

2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	1.000 × 0.400 × 1.000	0.400	0.500	0.200	
		0.400		0.200	

重心位置 XG = (Vi・Xi) / Vi = 0.200 / 0.400 = 0.500 (m)

- 4.1.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力
 - (1)自重による作用力
 - [1]常 時荷重

位置	鉛直力 W = ・ V (kN)		作用位置 X (m)
躯体	24.500 × 0.600 =	14.700	0.500

- (2)土砂重量,浮力
- [1]常 時荷重 (低水位)
 - 1)土砂重量による作用力

水位位置による分割

	全体積、	重心位置	水位より下の体積、重心位置		
位 置	体 積 V	重心位置 X	体 積 VI	重心位置 XI	
	(m³)	(m)	(m³)	(m)	
土砂(前面)	0.400	0.500	0.000	0.000	

	水位より上の体	‡積、重心位置
位置	体 積 Vu (m³)	重心位置 Xu (m)
土砂(前面)	0.400	0.500

水位より上の体積

Vu = V - VI

水位より上の重心位置

$$Xu = (V \cdot X - VI \cdot XI) / Vu$$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)		
土砂(前面)	0.400 × 14.000 = 5.600	0.000 × 15.000 = 0.000		

位 置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)	
土砂(前面)	5.600	0.500	

(3)自重集計

[1]常 時荷重 (低水位)

	重量 Ni (kN)	作用位置 Xi (m)	モーメント Ni・Xi (kN.m)
躯 体	14.700	0.500	7.350
前面土砂	5.600	0.500	2.800
合 計	20.300		10.150

4.1.3 杭反力

鉛直力

$$N = (ni \cdot Pi)$$

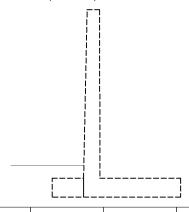
作用位置

$$X = \frac{\sum ni \cdot Pi \cdot Xi}{\sum ni \cdot Pi}$$

ここに、

Pi : つま先版設計区間にある杭の鉛直反力 Xi : つま先版設計位置から杭位置までの距離

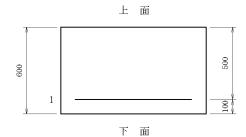
ni :杭本数


[1]常 時荷重 (低水位)

列番号	杭属性	杭位置まで の距離 Xi (m)	杭 本数 ni	杭反力 Pi (kN)	ni • Pi	ni • Pi • Xi
1	直	0.500	5	340.768	1703.84	851.92

$$X = 851.920 / 1703.839 = 0.500$$
 (m)

4.1.4 断面力の集計


[1]常 時荷重 (低水位)

項目		N _i (kN)	X, (m)	$M = N_i \cdot X_i$ $(kN.m)$
自	重	-20.300	0.500	-10.150
杭反	力	170.384	0.500	85.192
合	計	150.084		75.042

4.1.5 断面計算(許容応力度法)

(1)鉄筋配置

[単位:mm]

位置	立置	かぶり) 鉄		本数	鉄筋量 (cm²)
上	1'		_			
占	2'		_			
下	1	10.0	D13	1.267	8.00	10.136
下面	2		_			

引張側必要鉄筋量 8.954 (cm²)

(2)曲げ応力度の照査

(参考)

中立軸の算出

$$x^2+$$
 $\frac{2\cdot n}{b}$ $\left\{As\cdot (x-d)\right\}=0.0$ よりxを求める。

応力度の算出

$$\sigma_{\circ} = \frac{M}{\frac{b \cdot x}{2} \cdot \left(\frac{h}{2} - \frac{x}{3}\right) + n \cdot As \cdot \frac{(x-d) \cdot (h/2 - d)}{x}}$$

$$\sigma_{\circ} = n \cdot \sigma_{\circ} \cdot \frac{d - x}{x}$$

ここに、

x :コンクリートの圧縮縁から中立軸までの距離(mm)

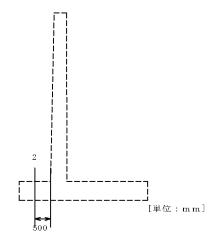
h :部材断面の高さ(mm), h = 600.000 b :部材断面幅(mm), b = 1000.000

d :部材の有効高(mm)

As : 引張側鉄筋の全断面積(mm²)

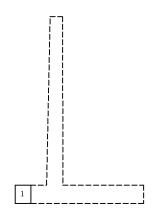
n : 鉄筋とコンクリートのヤング係数比, n = 15.00

e:部材断面の図心軸から軸方向力の作用点までの距離(mm)


c: コンクリートの曲げ圧縮応力度(N/mm²)

s:鉄筋の引張応力度(N/mm²) M:曲げモーメント(N.mm)

荷重状態(水 位)	M x		圧縮応力度(N/mm²)		引張応力度(N/mm²)	
何里(() 悠 () / () / ()	(kN.m)	(cm)	計算値	許容値	計算値	許容値
常 時荷重(低水位)	75.042	10.906	2.969	10.000	159.667	180.000

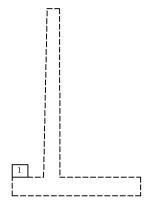

4.2 照査位置[2]の設計

付け根からの距離 = 0.500 m

4.2.1 水位を考慮しないブロックデータ

- (1)躯体自重
- 1)ブロック割り

2)自重・重心


区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	0.500 × 0.600 × 1.000	0.300	0.250	0.075	
		0.300		0.075	

重心位置 XG = (Vi・Xi) / Vi = 0.075 / 0.300 = 0.250 (m)

(2)前面土砂

[1]常 時荷重

1)ブロック割り

2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	0.500 × 0.400 × 1.000	0.200	0.250	0.050	
		0.200		0.050	

重心位置 XG = (Vi⋅Xi) / Vi = 0.050/0.200 = 0.250 (m)

4.2.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力

- (1)自重による作用力
- [1]常 時荷重

位置	鉛直力 W = V (kN)		作用位置 X (m)
躯体	24.500 × 0.300 =	7.350	0.250

(2)土砂重量,浮力

[1]常 時荷重 (低水位)

1)土砂重量による作用力

水位位置による分割

	全体積、	重心位置	水位より下の体積、重心位置		
位置	体 積 V (m³)	重心位置 X (m)	体 積 VI (m³)	重心位置 XI (m)	
土砂(前面)	0.200	0.250	0.000	0.000	

	水位より上の体積、重心位置			
位置	体 積 Vu (m³)	重心位置 Xu (m)		
土砂(前面)	0.200	0.250		

水位より上の体積

Vu = V - VI

水位より上の重心位置

 $Xu = (V \cdot X - VI \cdot XI) / Vu$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)
土砂(前面)	0.200 x 14.000 = 2.800	0.000 × 15.000 = 0.000

位置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)		
土砂(前面)	2.800	0.250		

(3)自重集計

[1]常 時荷重 (低水位)

		重 量 Ni (kN)	作用位置 Xi (m)	モーメント Ni・Xi (kN.m)	
躯 4	<u>.</u>	7.350	0.250	1.837	
前面土砂		2.800	0.250	0.700	
合 計	+	10.150		2.537	

4.2.3 杭反力

鉛直力

 $N = (ni \cdot Pi)$

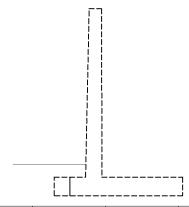
作用位置

$$X = \frac{\sum ni \cdot Pi \cdot Xi}{\sum ni \cdot Pi}$$

ここに、

Pi : つま先版設計区間にある杭の鉛直反力 Xi : つま先版設計位置から杭位置までの距離

ni :杭本数


[1]常 時荷重 (低水位)

列番号	杭属性	杭位置まで の距離 Xi (m)	杭 本数 ni	杭反力 Pi (kN)	ni • Pi	ni • Pi • Xi
1	直	0.000	5	340.768	1703.84	0.00

<合計>
$$ni \cdot Pi = 1703.839$$

 $ni \cdot Pi \cdot Xi = 0.000$
 $X = 0.000 / 1703.839 = 0.000$ (m)

4.2.4 断面力の集計

[1]常 時荷重 (低水位)

項目		N _i (kN)	X; (m)	$M = N_i \cdot X_i$ $(kN.m)$
自	重	-10.150	0.250	-2.537
杭反	力	170.384	0.000	0.000
合	計	160.234		-2.537

4.2.5 断面計算(許容応力度法)

(1)せん断応力度の照査

$$a > 2.5d$$
の場合 $S_h = S - \frac{M}{d'} \tan \theta$

a 2.5dの場合 S_h = S

ここに、

S_n:部材断面の有効高の変化の影響を考慮したせん断力(N)

d: フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

d':部材断面の有効高(mm)

b :部材断面幅(mm)

S:部材断面に作用するせん断力(N)

M:部材断面に作用する曲げモーメント(N.mm)

:フーチング上面と水平面のなす角度, = 0.000 , tan = 0.000

a :せん断スパン(mm)

荷重状態(水 位)	有効高 d' (cm)	2.5 • d	せん断スパン a (cm)	S (kN)	M (kN.m)	M/d' • tan	Sh (kN)
常 時荷重(低水位)	50.000	125.000	> 50.000	160.234	-2.537	0.000	160.234

$$\tau_{\text{m}} = \frac{S_{\text{h}}}{b \cdot d'} \leq \tau_{\text{al}}$$

ここに、

』: コンクリートの平均せん断応力度(N/mm²)

S_h:作用せん断力(N)

d : フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

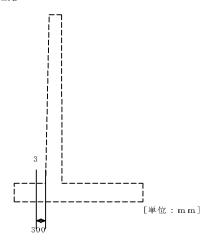
d':部材断面の有効高(mm)

b :部材断面幅(mm)

S:部材断面に作用するせん断力(N)

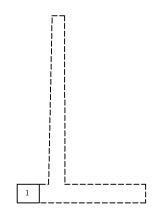
a1: 割増しされた許容せん断応力度(N/mm²)

ここに、


a':コンクリートのみでせん断力を負担する場合の許容せん断応力度(N/mm²)

Ce:部材断面の有効高に関する補正係数 Cpt:引張主鉄筋比Ptに関する補正係数 Cdc:せん断スパン比に関する補正係数

荷重状態(水 位)	せん断力 有効高		せん断応力度(N/mm²)			補正係数		
一 荷重状態(水 位) 	Sh(kN)	d'(cm)	計算値	許容値 at 許	容値。2	Се	Cpt	Cdc
常 時荷重(低水位)	160.234	50.000	0.320	1.161	1.900	1.29	0.90	4.00

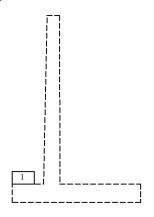

4.3 照査位置[3]の設計

付け根からの距離 = 0.300 m

4.3.1 水位を考慮しないブロックデータ

- (1)躯体自重
- 1)ブロック割り

2)自重・重心


区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	0.700 × 0.600 × 1.000	0.420	0.350	0.147	
		0.420		0.147	

重心位置 XG = (Vi・Xi) / Vi = 0.147 / 0.420 = 0.350 (m)

(2)前面土砂

[1]常 時荷重

1)ブロック割り

2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	0.700 × 0.400 × 1.000	0.280	0.350	0.098	
		0.280		0.098	

重心位置 XG = (Vi・Xi) / Vi = 0.098 / 0.280 = 0.350 (m)

- 4.3.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力
 - (1)自重による作用力
 - [1]常 時荷重

位置	鉛直力 W = ・ V (kN)	作用位置 X (m)
躯体	24.500 × 0.420 = 10.290	0.350

- (2)土砂重量,浮力
- [1]常 時荷重 (低水位)
 - 1)土砂重量による作用力

水位位置による分割

	全体積、	重心位置	水位より下の体積、重心位置		
位置	体 積 V (m³)	重心位置 X (m)	体 積 VI (m³)	重心位置 XI (m)	
土砂(前面)	0.280	0.350	0.000	0.000	

	水位より上の体積、重心位置				
位置	体 積 Vu (m³)	重心位置 Xu (m)			
土砂(前面)	0.280	0.350			

水位より上の体積

Vu = V - VI

水位より上の重心位置

$$Xu = (V \cdot X - VI \cdot XI) / Vu$$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重 (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)			
土砂(前面)	0.280 × 14.000 =	3.920	0.000 ×	15.000 =	0.000

位 置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)		
土砂(前面)	3.920	0.350		

(3)自重集計

[1]常 時荷重 (低水位)

	重 量 Ni (kN)	作用位置 Xi (m)	モーメント Ni・Xi (kN.m)	
躯 体	10.290	0.350	3.601	
前面土砂	3.920	0.350	1.372	
合 計	14.210		4.974	

4.3.3 杭反力

鉛直力

$$N = (ni \cdot Pi)$$

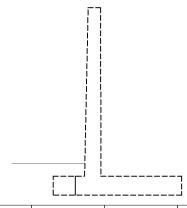
作用位置

$$X = \frac{\sum ni \cdot Pi \cdot Xi}{\sum ni \cdot Pi}$$

ここに、

Pi : つま先版設計区間にある杭の鉛直反力 Xi : つま先版設計位置から杭位置までの距離

ni :杭本数


[1]常 時荷重 (低水位)

列番号	杭属性	杭位置まで の距離 Xi (m)	杭 本数 ni	杭反力 Pi (kN)	ni • Pi	ni • Pi • Xi
1	直	0.200	5	340.768	1703.84	340.77

$$X = 340.768 / 1703.839 = 0.200$$
 (m)

4.3.4 断面力の集計

[1]常 時荷重 (低水位)

項目	N _i (kN)	X, (m)	M = N _i • X _i (kN.m)
自 重	-14.210	0.350	-4.974
杭反力	170.384	0.200	34.077
合 計	156.174		29.103

4.3.5 断面計算(許容応力度法)

(1)せん断応力度の照査

$$a > 2.5d$$
の場合 $S_h = S - \frac{M}{d} \tan \theta$

a 2.5dの場合 S_h = S

ここに、

S_n:部材断面の有効高の変化の影響を考慮したせん断力(N)

d:フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

d':部材断面の有効高(mm)

b :部材断面幅(mm)

S:部材断面に作用するせん断力(N)

M:部材断面に作用する曲げモーメント(N.mm)

:フーチング上面と水平面のなす角度, = 0.000 , tan = 0.000

a : せん断スパン(mm)

荷重状態(水 位)	有効高 d' (cm)	2.5 • d	t	ん断スパン a (cm)	S (kN)	M (kN.m)	M/d'•tan	S _h (kN)
常 時荷重(低水位)	50.000	125.000	>	50.000	156.174	29.103	0.000	156.174

$$\tau_{\,\text{\tiny m}} \, = \, \frac{S_{\text{\tiny h}}}{\text{\tiny $b \cdot d'$}} \, \, \leqq \, \, \tau_{\,\text{\tiny al}}$$

ここに、

』: コンクリートの平均せん断応力度(N/mm²)

S_n:作用せん断力(N)

d: フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

d':部材断面の有効高(mm)

b :部材断面幅(mm)

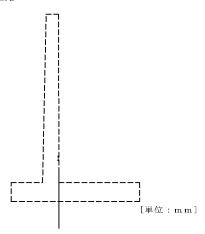
S:部材断面に作用するせん断力(N)

a1: 割増しされた許容せん断応力度(N/mm²)

 $_{a1}$ = Ce · Cpt · Cdc · $_{a1}$ '

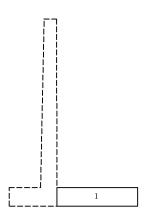
ここに、

a1': コンクリートのみでせん断力を負担する場合の許容せん断応力度(N/mm²)


Ce:部材断面の有効高に関する補正係数 Cpt:引張主鉄筋比Ptに関する補正係数 Cdc:せん断スパン比に関する補正係数

荷重状態(水 位)	せん断力	有効高 d'(cm)	せん断応力度(N/mm²)			補正係数		
何里扒您(小 位)	S _h (kN)		計算值	許容値 a 許容	容値 22	Се	Cpt	Cdc
常 時荷重(低水位)	156.174	50.000	0.312	1.161	1.900	1.29	0.90	4.00

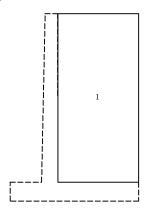
5章 かかと版の設計


5.1 照査位置[1]の設計

付け根からの距離 = 0.000 m

5.1.1 水位を考慮しないブロックデータ

- (1)躯体自重
- 1)ブロック割り


2)自重・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	2.600 × 0.600 × 1.000	1.560	1.300	2.028	
		1.560		2.028	

重心位置 XG = (Vi·Xi) / Vi = 2.028 / 1.560 = 1.300 (m)

(2)背面土砂

1)ブロック割り

2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	2.600 × 5.400 × 1.000	14.040	1.300	18.252	
		14.040		18.252	

- 5.1.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力
 - (1)自重による作用力
 - [1]常 時荷重

位置	鉛直力 W = ・ V (kN)	作用位置 X (m)
躯体	24.500 × 1.560 = 38.220	1.300

- (2)土砂重量,浮力
- [1]常 時荷重 (低水位)
 - 1)土砂重量による作用力

水位位置による分割

	全体積、重心位置		水位より下の体積、重心位置	
位置	体 積 V (m³)	重心位置 X (m)	体 積 VI (m³)	重心位置 XI (m)
土砂(背面)	14.040	1.300	0.000	0.000

	水位より上の体積、重心位置			
位置	体 Vu	重心位置 Xu		
	(m³)	(m)		
土砂(背面)	14.040	1.300		

$$Vu = V - VI$$

水位より上の重心位置

$$Xu = (V \cdot X - VI \cdot XI) / Vu$$

土砂による作用力

位 置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)		
土砂(背面)	14.040 × 19.000 = 266.760	0.000 × 19.500 = 0.000		

位置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)
土砂(背面)	266.760	1.300

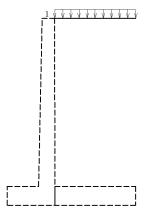
(3)自重集計

[1]常 時荷重 (低水位)

	重量 Ni (kN)	作用位置 Xi (m)	モーメント Ni・Xi (kN.m)
躯 体	38.220	1.300	49.686
背面土砂	266.760	1.300	346.788
合 計	304.980		396.474

5.1.3 地表面の載荷荷重,雪荷重

鉛直力


$$N = \frac{1}{2} \cdot (q1 + q2) \cdot L$$

ここに、

q :地表面載荷荷重強度 L :地表面載荷荷重長さ

X:設計断面位置から合力作用点までの距離

[1]常 時荷重

番号	q1 (kN/m²)	q2 (kN/m²)	L (m)	鉛直力 N (kN)	作用位置 X (m)
1	10.000	10.000	2.600	26.000	1.300

5.1.4 土圧

[1]常 時荷重 (低水位)

土圧は試行くさび法により求める。

仮想背面の位置(つま先からの距離) xp = 4.118 m

yp = 0.000 m

仮想背面の高さ

H = 6.000 m

仮想背面が鉛直面となす角度

= 0.000 °

背面土砂の単位体積重量

 $s = 19.000 \text{ kN/m}^3$

背面土砂の内部摩擦角

= 35.000 °

壁面摩擦角

= 35.000 °

すべり角の変化範囲

 $i = 10.00 ^{\circ} \sim 80.00 ^{\circ}$

すべり角()に対する土砂重量(W), 土圧力(P)

水位 hw = 0.000 m

すべり角		土圧力			
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
56.00	230.682	0.000	40.471	271.153	100.147
57.00	222.097	0.000	38.964	261.061	100.368
58.00	213.705	0.000	37.492	251.197	100.343

土圧力が最大となるのは、

である。

土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

$$= \frac{261.061 \times \sin(57.00^{\circ} - 35.00^{\circ})}{\cos(57.00^{\circ} - 35.00^{\circ} - 0.000^{\circ} - 35.000^{\circ})}$$
= 100.368 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分

Ph =
$$P \cdot \cos($$
 + $)$ = $100.368 \times \cos(0.000 \circ + 35.000 \circ)$ = 82.217 kN

鉛直成分

$$Pv = P \cdot sin(+) = 100.368 \times sin(0.000^{\circ} + 35.000^{\circ}) = 57.569 \text{ kN}$$

作用位置

Ho =
$$\frac{\text{H}}{3}$$
 = $\frac{6.000}{3}$ = 2.000 m

$$y = yp + Ho = 0.000 + 2.000 = 2.000 m$$

土圧の鉛直成分は、これと等価の三角形分布荷重とする。

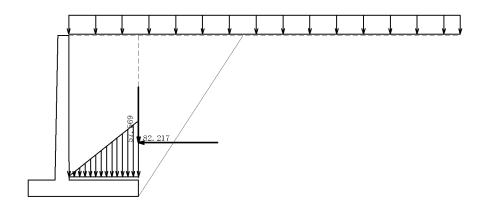
$$pv = \frac{2 \cdot Pv}{L} = \frac{2 \times 57.569}{2.600} = 44.284 \text{ kN/m}$$

ここに、

pv:等価の三角形分布荷重

Pv: 土圧の鉛直成分 L: かかと版の長さ 付け根から設計断面位置までの距離 L1 = 0.000 m 設計断面位置より後方の分布荷重作用幅 L2 = 2.600 m

設計断面位置の分布荷重強度 $pd = \frac{pv}{L} \cdot L1 = \frac{44.284}{2.600} \times 0.000 = 0.000 \text{ kN/m}$


鉛直力

$$N = \frac{1}{2} \cdot (pd + pv) \cdot L2 = \frac{1}{2} \times (0.000 + 44.284) \times 2.600 = 57.569 \text{ kN}$$

作用位置

$$x = \frac{pd + 2 \cdot pv}{pd + pv} \cdot \frac{L2}{3} = \frac{0.000 + 2 \times 44.284}{0.000 + 44.284} \times \frac{2.600}{3} = 1.733 \text{ m}$$

・土圧図

5.1.5 杭反力

$$N = (ni \cdot Pi)$$

作用位置

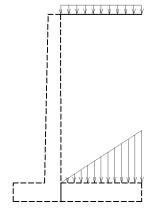
$$X = \frac{\sum ni \cdot Pi \cdot Xi}{\sum ni \cdot Pi}$$

ここに、

Pi:かかと版設計区間にある杭の鉛直反力 Xi:かかと版設計位置から杭位置までの距離

ni :杭本数

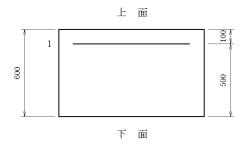
[1]常 時荷重 (低水位)


列番号	杭属性	杭位置まで の距離 Xi (m)	杭 本数 ni	杭反力 Pi (kN)	ni • Pi	ni • Pi • Xi
2	直	-0.541	4	341.303	1365.21	-738.58
3	直	-2.100	5	341.838	1709.19	-3589.30

$$ni \cdot Pi \cdot Xi = -4327.882$$

$$X = -4327.882 / 3074.404 = -1.408$$
 (m)

5.1.6 断面力の集計


[1]常 時荷重 (低水位)

項目	N _i (kN)	X, (m)	M = N _i • X _i (kN.m)
自 重	304.980	1.300	396.474
載荷、雪	26.000	1.300	33.800
土圧	57.569	1.733	99.786
杭反力	-307.440	1.408	-432.788
合 計	81.109		97.272

5.1.7 断面計算(許容応力度法)

(1)鉄筋配置

[単位:mm]

位置	立	かぶり (cm)	鉄 筋 径	鉄筋面積 (cm²/本)	本数	鉄筋量 (cm²)
上	1	10.0	D22	3.871	4.00	15.484
上面	2		_			
下	1'		_			
面	2'		_			

引張側必要鉄筋量 11.715 (cm²)

(2)曲げ応力度の照査

(参考)

中立軸の算出

$$x^2 + \frac{2 \cdot n}{b} \{ As \cdot (x-d) \} = 0.0$$

よりxを求める。

応力度の算出

$$\sigma_{\circ} = \frac{M}{\frac{b \cdot x}{2} \cdot \left(\frac{h}{2} - \frac{x}{3}\right) + n \cdot As \cdot \frac{(x-d) \cdot (h/2-d)}{x}}$$

$$\sigma_{\circ} = n \cdot \sigma_{\circ} \cdot \frac{d-x}{x}$$

ここに、

x : コンクリートの圧縮縁から中立軸までの距離(mm)

h :部材断面の高さ(mm), h = 600.000 b :部材断面幅(mm), b = 1000.000

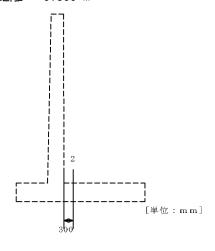
d :部材の有効高(mm)

As : 引張側鉄筋の全断面積(mm²)

n : 鉄筋とコンクリートのヤング係数比, n = 15.00

e :部材断面の図心軸から軸方向力の作用点までの距離(mm)

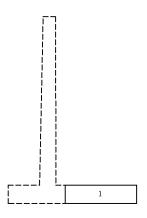
c:コンクリートの曲げ圧縮応力度(N/mm²)


s:鉄筋の引張応力度(N/mm²)

M :曲げモーメント(N.mm)

荷重状態(水 位)	М	x	圧縮応力度(N/mm²)		引張応力度(N/mm²)	
何里从您(小一位)	(kN.m)	(cm)	計算値	許容値	計算値	許容値
常 時荷重(低水位)	97.272	13.096	3.256	10.000	137.650	180.000

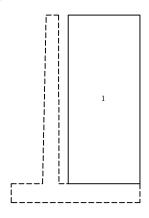
5.2 照査位置[2]の設計


付け根からの距離 = 0.300 m

5.2.1 水位を考慮しないブロックデータ

(1)躯体自重

1)ブロック割り

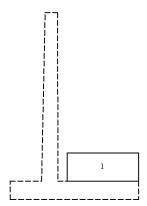

2)自重・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	2.300 × 0.600 × 1.000	1.380	1.150	1.587	
		1.380		1.587	

重心位置 XG = (Vi·Xi) / Vi = 1.587 / 1.380 = 1.150 (m)

(2)背面土砂

1)ブロック割り


2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	2.300 × 5.400 × 1.000	12.420	1.150	14.283	
		12.420		14.283	

重心位置 XG = (Vi·Xi) / Vi = 14.283 / 12.420 = 1.150 (m)

5.2.2 水位を考慮するブロックデータ

- (1)背面土砂
 - [1]常 時荷重 (高水位)
 - (1)ブロック割り

(2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	2.300 × 0.900 × 1.000	2.070	1.150	2.380	
		2.070		2.380	

重心位置 XG = (Vi·Xi) / Vi = 2.380 / 2.070 = 1.150 (m)

- 5.2.3 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力
 - (1)自重による作用力
 - [1]常 時荷重

位置	鉛直力 W = ・ V (kN)	作用位置 X (m)
躯体	24.500 × 1.380 = 33.810	1.150

- (2)土砂重量,浮力
- [1]常 時荷重 (低水位)
 - 1)土砂重量による作用力

水位位置による分割

	全体積、	重心位置	水位より下の体積、重心位置		
位 置	体 積 V (m³)	重心位置 X (m)	体 積 VI (m³)	重心位置 XI (m)	
土砂(背面)	12.420	1.150	0.000	0.000	

	水位より上の体積、重心位置			
位 置	体 積 Vu	重心位置 Xu		
	(m³)	(m)		
土砂(背面)	12.420	1.150		

水位より上の体積

Vu = V - VI

水位より上の重心位置

 $Xu = (V \cdot X - VI \cdot XI) / Vu$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)
土砂(背面)	12.420 × 19.000 = 235.980	0.000 × 19.500 = 0.000

位置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)
土砂(背面)	235.980	1.150

[2]常 時荷重 (高水位)

1)土砂重量による作用力

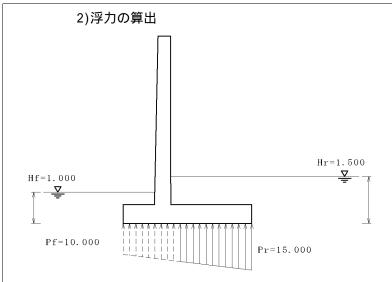
水位位置による分割

	全体積、重心位置		水位より下の体積、重心位置	
位置	体 積 V (m³)	重心位置 X (m)	体 積 VI (m³)	重心位置 XI (m)
土砂(背面)	12.420	1.150	2.070	1.150

	水位より上の体	水位より上の体積、重心位置		
位置	体 積 Vu	重心位置 Xu		
	(m³)	(m)		
土砂(背面)	10.350	1.150		

水位より上の体積

Vu = V - VI


水位より上の重心位置

 $Xu = (V \cdot X - VI \cdot XI) / Vu$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)		
土砂(背面)	10.350 × 19.000 = 196.650	2.070 × 19.500 = 40.365		

位置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)
土砂(背面)	237.015	1.150

前面水位 Hf = 1.000 (m)背面水位 Hr = 1.500 (m)

フーチング前面での水圧強度 Pf = 12.207 (kN/m²) フーチング背面での水圧強度 Pr = 15.000 (kN/m²)

揚圧力

$$U = \frac{Pf + Pr}{2} \cdot Bj \cdot Bc \cdot \lambda = 31.288 \text{ (kN)}$$

作用位置(フーチング前面から)

$$X = \frac{Pf + 2 \cdot Pr}{3 \cdot (Pf + Pr)} \cdot Bj = 1.189 \quad (m)$$

ここに、

Bj : 土圧方向フーチング幅 Bj = 2.300 (m) Bc : 直角方向フーチング幅 Bc = 1.000 (m)

: 浮力の低減係数 = 1.000

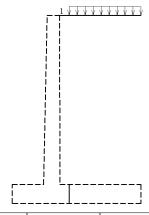
(3)自重集計

[1]常 時荷重 (高水位)

	重 量 Ni (kN)	作用位置 Xi (m)	モーメント Ni・Xi (kN.m)
躯 体	33.810	1.150	38.882
背面土砂	237.015	1.150	272.567
合 計	270.825		311.448

5.2.4 地表面の載荷荷重,雪荷重

鉛直力


$$N = \frac{1}{2} \cdot (q1 + q2) \cdot L$$

ここに、

q : 地表面載荷荷重強度 L : 地表面載荷荷重長さ

X : 設計断面位置から合力作用点までの距離

[1]常 時荷重

番号	q1 (kN/m²)	q2 (kN/m²)	L (m)	鉛直力 N (kN)	作用位置 X (m)
1	10.000	10.000	2.300	23.000	1.150

5.2.5 土圧

[1]常 時荷重 (低水位)

土圧は試行くさび法により求める。

仮想背面の位置(つま先からの距離) xp = 4.118 m

yp = 0.000 m

仮想背面の高さ H = 6.000 m

仮想背面が鉛直面となす角度 = 0.000 °

背面土砂の単位体積重量 s = 19.000 kN/m³

背面土砂の内部摩擦角 = 35.000 °

壁面摩擦角 = 35.000°

すべり角の変化範囲 i = 10.00 ° ~ 80.00 °

すべり角()に対する土砂重量(W), 土圧力(P)

水位 hw = 0.000 m

すべり角		土圧力			
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
56.00	230.682	0.000	40.471	271.153	100.147
57.00	222.097	0.000	38.964	261.061	100.368
58.00	213.705	0.000	37.492	251.197	100.343

土圧力が最大となるのは、

である。

土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

$$= \frac{261.061 \times \sin(57.00^{\circ} - 35.00^{\circ})}{\cos(57.00^{\circ} - 35.00^{\circ} - 0.000^{\circ} - 35.000^{\circ})}$$
= 100.368 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分

$$Ph = P \cdot cos(+) = 100.368 \times cos(0.000 \circ + 35.000 \circ) = 82.217 \text{ kN}$$

鉛直成分

$$Pv = P \cdot sin(+) = 100.368 \times sin(0.000° + 35.000°) = 57.569 kN$$
作用位置

Ho =
$$\frac{H}{3}$$
 = $\frac{6.000}{3}$ = 2.000 m

$$y = yp + Ho = 0.000 + 2.000 = 2.000 m$$

土圧の鉛直成分は、これと等価の三角形分布荷重とする。

$$pv = \frac{2 \cdot Pv}{L} = \frac{2 \times 57.569}{2.600} = 44.284 \text{ kN/m}$$

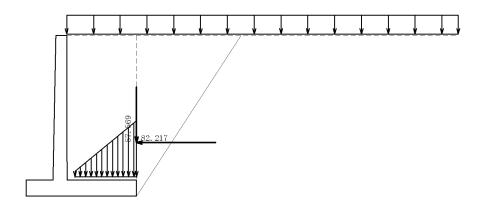
ここに、

pv:等価の三角形分布荷重

Pv:土圧の鉛直成分 L:かかと版の長さ

付け根から設計断面位置までの距離 L1 = 0.300 m 設計断面位置より後方の分布荷重作用幅 L2 = 2.300 m

設計断面位置の分布荷重強度 pd = $\frac{\text{pv}}{\text{L}}$ ・L1 = $\frac{44.284}{2.600}$ × 0.300 = 5.110 kN/m


鉛直力

$$N = \frac{1}{2} \cdot (pd + pv) \cdot L2 = \frac{1}{2} \times (5.110 + 44.284) \times 2.300 = 56.803 \text{ kN}$$

作用位置

$$x = \frac{pd + 2 \cdot pv}{pd + pv} \cdot \frac{L2}{3} = \frac{5.110 + 2 \times 44.284}{5.110 + 44.284} \times \frac{2.300}{3} = 1.454 \text{ m}$$

・土圧図

[2]常 時荷重 (高水位)

土圧は試行くさび法により求める。

仮想背面の位置(つま先からの距離) xp = 4.118 m

yp = 0.000 m

仮想背面の高さ H = 6.000 m

仮想背面が鉛直面となす角度 = 0.000 ° 背面土砂の単位体積重量 $s = 19.000 \text{ kN/m}^3$

背面土砂の内部摩擦角 = 35.000 ° 壁面摩擦角 = 35.000 °

すべり角の変化範囲 i = 10.00 ° ~ 80.00 °

すべり角()に対する土砂重量(W), 土圧力(P)

水位 hw = 1.500 m

すべり角		土砂重量 W(kN)						
(°)	水位以上	水位以下	上載荷重	合計	P (kN)			
56.00	216.264	7.209	40.471	263.944	97.485			
57.00	208.216	6.941	38.964	254.121	97.699			
58.00	200.349	6.678	37.492	244.519	97.676			

土圧力が最大となるのは、

である。

土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

$$= \frac{254.121 \times \sin(57.00^{\circ} - 35.00^{\circ})}{\cos(57.00^{\circ} - 35.00^{\circ} - 0.000^{\circ} - 35.000^{\circ})}$$
= 97.699 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分

$$Ph = P \cdot cos(+) = 97.699 \times cos(0.000 \circ + 35.000 \circ) = 80.030 \text{ kN}$$

鉛直成分

$$Pv = P \cdot sin(+) = 97.699 \times sin(0.000^{\circ} + 35.000^{\circ}) = 56.038 \text{ kN}$$

作用位置

Ho =
$$\frac{H}{3}$$
 = $\frac{6.000}{3}$ = 2.000 m

$$y = yp + Ho = 0.000 + 2.000 = 2.000 m$$

土圧の鉛直成分は、これと等価の三角形分布荷重とする。

$$pv = \frac{2 \cdot Pv}{L} = \frac{2 \times 56.038}{2.600} = 43.106 \text{ kN/m}$$

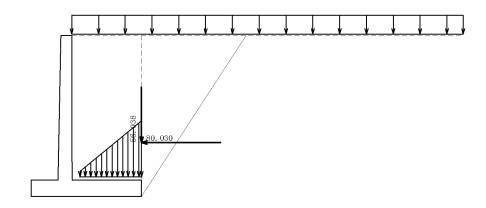
ここに、

pv:等価の三角形分布荷重

Pv: 土圧の鉛直成分 L: かかと版の長さ

付け根から設計断面位置までの距離 L1 = 0.300 m 設計断面位置より後方の分布荷重作用幅 L2 = 2.300 m

設計断面位置の分布荷重強度 pd = $\frac{\text{pv}}{\text{L}}$ ・L1 = $\frac{43.106}{2.600}$ × 0.300 = 4.974 kN/m


鉛直力

$$N = \frac{1}{2} \cdot (pd + pv) \cdot L2 = \frac{1}{2} \times (4.974 + 43.106) \times 2.300 = 55.292 \text{ kN}$$

作用位置

$$x = \frac{pd + 2 \cdot pv}{pd + pv} \cdot \frac{L2}{3} = \frac{4.974 + 2 \times 43.106}{4.974 + 43.106} \times \frac{2.300}{3} = 1.454 \text{ m}$$

・土圧図

5.2.6 杭反力

鉛直力

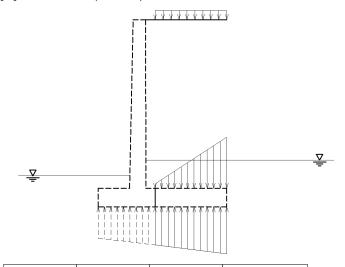
$$N = (ni \cdot Pi)$$

作用位置

$$X = \frac{\sum ni \cdot Pi \cdot Xi}{\sum ni \cdot Pi}$$

ここに、

Pi:かかと版設計区間にある杭の鉛直反力 Xi:かかと版設計位置から杭位置までの距離


ni :杭本数

[1]常 時荷重 (高水位)

列番号	杭属性	杭位置まで の距離 Xi (m)	杭 本数 ni	杭反力 Pi (kN)	ni • Pi	ni • Pi • Xi
2	直	-0.241	4	304.565	1218.26	-293.60
3	直	-1.800	5	303.694	1518.47	-2733.25

5.2.7 断面力の集計

[1]常 時荷重 (高水位)

項目		N _i (kN)	X; (m)	$M = N_i \cdot X_i $ (kN.m)
自	重	270.825	1.150	311.448
浮	カ	-31.288	1.189	-37.213
載荷、	曹	23.000	1.150	26.450
土	圧	55.292	1.454	80.396
杭 反	カ	-273.673	1.106	-302.685
合	計	44.155		78.396

5.2.8 断面計算(許容応力度法)

(1)せん断応力度の照査

$$a > 2.5d$$
の場合 $S_h = S - \frac{M}{d'} \tan \theta$

a 2.5dの場合 S_h = S

ここに、

Sh: 部材断面の有効高の変化の影響を考慮したせん断力(N)

d: フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

d':部材断面の有効高(mm)

b :部材断面幅(mm)

S:部材断面に作用するせん断力(N)

M:部材断面に作用する曲げモーメント(N.mm)

:フーチング上面と水平面のなす角度, = 0.000 , tan = 0.000

a :せん断スパン(mm)

荷重状態(水 位)	有効高 d' (cm)	2.5 • d	せん断スパン a (cm)	S (kN)	M (kN.m)	M/d'•tan	S₁ (kN)
常 時荷重(高水位)	50.000	125.000	166.501	44.155	78.396	0.000	44.155

$$\tau_{\text{n}} = \frac{S_{\text{h}}}{\text{b} \cdot \text{d}} \leq \tau_{\text{al}}$$

ここに、

』: コンクリートの平均せん断応力度(N/mm²)

S_h:作用せん断力(N)

d : フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

d':部材断面の有効高(mm)

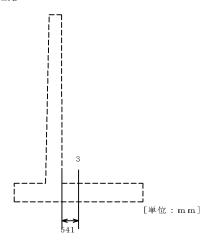
b :部材断面幅(mm)

S:部材断面に作用するせん断力(N)

a1: 割増しされた許容せん断応力度(N/mm²)

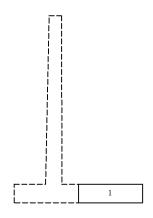
$$_{a1}$$
 = Ce · Cpt · Cdc · $_{a1}$ '

ここに、


a1:コンクリートのみでせん断力を負担する場合の許容せん断応力度(N/mm²)

Ce:部材断面の有効高に関する補正係数 Cpt:引張主鉄筋比Ptに関する補正係数 Cdc:せん断スパン比に関する補正係数

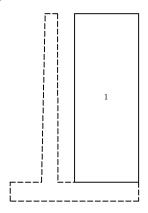
荷重状態(水 位)	せん断力	有効高	せん断応力度(N/mm²)			補正係数		
何里从恋(小 位)	Sh(kN)	d'(cm)	計算値	許容値 at 許容	值 _{a2}	Се	Cpt	Cdc
常 時荷重(高水位)	44.155	50.000	0.088	0.325	1.900	1.29	1.01	1.00


5.3 照査位置[3]の設計

付け根からの距離 = 0.541 m

5.3.1 水位を考慮しないブロックデータ

- (1)躯体自重
- 1)ブロック割り


2)自重・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	2.059 × 0.600 × 1.000	1.235	1.030	1.272	
		1.235		1.272	

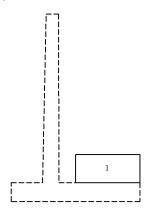
重心位置 XG = (Vi·Xi) / Vi = 1.272 / 1.235 = 1.030 (m)

(2)背面土砂

1)ブロック割り

2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	2.059 × 5.400 × 1.000	11.119	1.030	11.447	
		11.119		11.447	


重心位置 XG = (Vi·Xi) / Vi = 11.447 / 11.119 = 1.030 (m)

5.3.2 水位を考慮するブロックデータ

(1)背面土砂

[1]常 時荷重 (高水位)

(1)ブロック割り

(2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	2.059 × 0.900 × 1.000	1.853	1.030	1.908	
		1.853		1.908	

重心位置 XG = (Vi·Xi) / Vi = 1.908 / 1.853 = 1.030 (m)

5.3.3 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力

- (1)自重による作用力
- [1]常 時荷重

位置	鉛直力 W = ・ V (kN)	作用位置 X (m)
躯体	24.500 × 1.235 = 30.267	1.030

(2)土砂重量,浮力

[1]常 時荷重 (低水位)

1)土砂重量による作用力

水位位置による分割

	全体積、	重心位置	水位より下の体	は積、重心位置
位置	体 積 V (m³)	重心位置 X	体 積 VI (m³)	重心位置 XI (m)
	(111)	(m)	(111)	(111)
土砂(背面)	11.119	1.030	0.000	0.000

	水位より上の体	本積、重心位置
位置	体 積 Vu (m³)	重心位置 Xu (m)
土砂(背面)	11.119	1.030

水位より上の体積

Vu = V - VI

水位より上の重心位置

 $Xu = (V \cdot X - VI \cdot XI) / Vu$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)		
土砂(背面)	11.119 × 19.000 = 211.253	0.000 × 19.500 = 0.000		

位置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)
土砂(背面)	211.253	1.030

[2]常 時荷重 (高水位)

1)土砂重量による作用力

水位位置による分割

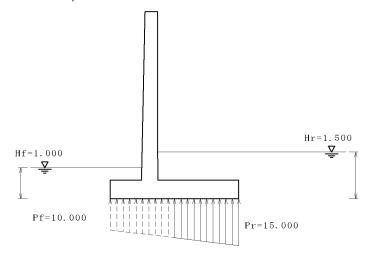
	全体積、	重心位置	水位より下の体	積、重心位置
位 置	体 (重心位置 X	体 積 \/I	重心位置 YI
	(m³)	(m)	(m³)	(m)
土砂(背面)	11.119	1.030	1.853	1.030

	水位より上の体	捧積、重心位置		
位 置	体 積 Vu	重心位置 Xu		
	(m³)	(m)		
土砂(背面)	9.266	1.029		

水位より上の体積

$$Vu = V - VI$$

水位より上の重心位置


$$Xu = (V \cdot X - VI \cdot XI) / Vu$$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)
土砂(背面)	9.266 × 19.000 = 176.044	1.853 × 19.500 = 36.135

位 置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)
土砂(背面)	212.179	1.030

2)浮力の算出

前面水位

Hf = 1.000 (m)

背面水位

Hr = 1.500 (m)

フーチング前面での水圧強度 Pf = 12.500 (kN/m²)

フーチング背面での水圧強度 Pr = 15.000 (kN/m²)

揚圧力

$$U = \frac{Pf + Pr}{2} \cdot Bj \cdot Bc \cdot \lambda = 28.311 \text{ (kN)}$$

作用位置(フーチング前面から)

$$X = \frac{Pf + 2 \cdot Pr}{3 \cdot (Pf + Pr)} \cdot Bj = 1.061 \quad (m)$$

ここに、

Bj : 土圧方向フーチング幅 Bj = 2.059 (m) Bc : 直角方向フーチング幅 Bc = 1.000 (m)

: 浮力の低減係数 = 1.000

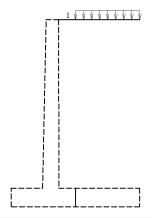
(3)自重集計

[1]常 時荷重 (高水位)

	重 量 Ni (kN)	作用位置 Xi (m)	モーメント Ni・Xi (kN.m)
躯 体	30.267	1.030	31.160
背面土砂	212.179	1.029	218.351
合 計	242.446		249.511

5.3.4 地表面の載荷荷重,雪荷重

鉛直力


$$N = \frac{1}{2} \cdot (q1 + q2) \cdot L$$

ここに、

q :地表面載荷荷重強度 L :地表面載荷荷重長さ

X:設計断面位置から合力作用点までの距離

[1]常 時荷重

番号	q1 (kN/m²)	q2 (kN/m²)	L (m)	鉛直力 N (kN)	作用位置 X (m)
1	10.000	10.000	2.059	20.590	1.030

5.3.5 土圧

[1]常 時荷重 (低水位)

土圧は試行くさび法により求める。

仮想背面の位置(つま先からの距離) > >

xp = 4.118 m

yp = 0.000 m

仮想背面の高さ H = 6.000 m= 0.000 ° 仮想背面が鉛直面となす角度 背面土砂の単位体積重量

 $s = 19.000 \text{ kN/m}^3$

背面土砂の内部摩擦角 = 35.000 ° 壁面摩擦角 = 35.000 °

 $i = 10.00 ^{\circ} \sim 80.00 ^{\circ}$ すべり角の変化範囲

すべり角()に対する土砂重量(W), 土圧力(P)

水位 hw = 0.000 m

すべり角		土圧力			
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
56.00	230.682	0.000	40.471	271.153	100.147
57.00	222.097	0.000	38.964	261.061	100.368
58.00	213.705	0.000	37.492	251.197	100.343

土圧力が最大となるのは、

である。

土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

$$= \frac{261.061 \times \sin(57.00^{\circ} - 35.00^{\circ})}{\cos(57.00^{\circ} - 35.00^{\circ} - 0.000^{\circ} - 35.000^{\circ})}$$
= 100.368 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分

鉛直成分

 $Pv = P \cdot sin(+) = 100.368 \times sin(0.000^{\circ} + 35.000^{\circ}) = 57.569 \text{ kN}$ 作用位置

Ho =
$$\frac{H}{3}$$
 = $\frac{6.000}{3}$ = 2.000 m

$$y = yp + Ho = 0.000 + 2.000 = 2.000 m$$

土圧の鉛直成分は、これと等価の三角形分布荷重とする。

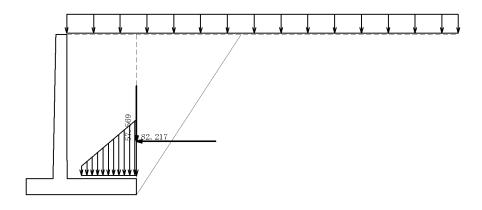
$$pv = \frac{2 \cdot Pv}{L} = \frac{2 \times 57.569}{2.600} = 44.284 \text{ kN/m}$$

ここに、

pv:等価の三角形分布荷重

Pv: 土圧の鉛直成分 L:かかと版の長さ

付け根から設計断面位置までの距離 L1 = 0.541 m 設計断面位置より後方の分布荷重作用幅 L2 = 2.059 m 設計断面位置の分布荷重強度 $pd = \frac{pv}{L} \cdot L1 = \frac{44.284}{2.600} \times 0.541 = 9.214 \text{ kN/m}$


鉛直力

$$N = \frac{1}{2} \cdot (pd + pv) \cdot L2 = \frac{1}{2} \times (9.214 + 44.284) \times 2.059 = 55.076 \text{ kN}$$

作用位置

$$x = \frac{pd + 2 \cdot pv}{pd + pv} \cdot \frac{L2}{3} = \frac{9.214 + 2 \times 44.284}{9.214 + 44.284} \times \frac{2.059}{3} = 1.254 \text{ m}$$

・土圧図

[2]常 時荷重 (高水位)

土圧は試行くさび法により求める。

仮想背面の位置(つま先からの距離) xp = 4.118 m

yp = 0.000 m

仮想背面の高さ H = 6.000 m

仮想背面が鉛直面となす角度 = 0.000 °

背面土砂の単位体積重量 s = 19.000 kN/m³

背面土砂の内部摩擦角 = 35.000 °

壁面摩擦角 = 35.000 °

i = 10.00 ° ~ 80.00 °

すべり角()に対する土砂重量(W),土圧力(P)

水位 hw = 1.500 m

すべり角		土圧力			
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
56.00	216.264	7.209	40.471	263.944	97.485
57.00	208.216	6.941	38.964	254.121	97.699
58.00	200.349	6.678	37.492	244.519	97.676

土圧力が最大となるのは、

である。

土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

$$= \frac{254.121 \times \sin(57.00^{\circ} - 35.00^{\circ})}{\cos(57.00^{\circ} - 35.00^{\circ} - 0.000^{\circ} - 35.000^{\circ})}$$
= 97.699 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分

Ph =
$$P \cdot \cos($$
 + $) = 97.699 \times \cos(0.000 \circ + 35.000 \circ) = 80.030 kN$

鉛直成分

$$Pv = P \cdot sin(+) = 97.699 \times sin(0.000 \circ + 35.000 \circ) = 56.038 \text{ kN}$$

作用位置

Ho =
$$\frac{H}{3}$$
 = $\frac{6.000}{3}$ = 2.000 m

$$y = yp + Ho = 0.000 + 2.000 = 2.000 m$$

土圧の鉛直成分は、これと等価の三角形分布荷重とする。

$$pv = \frac{2 \cdot Pv}{L} = \frac{2 \times 56.038}{2.600} = 43.106 \text{ kN/m}$$

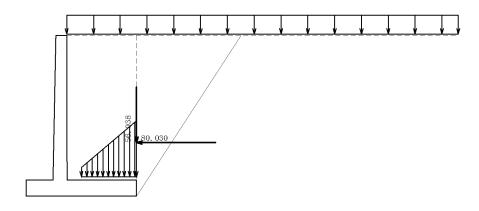
ここに、

pv:等価の三角形分布荷重

Pv: 土圧の鉛直成分 L:かかと版の長さ

付け根から設計断面位置までの距離 L1 = 0.541 m 設計断面位置より後方の分布荷重作用幅 L2 = 2.059 m

設計断面位置の分布荷重強度 pd = $\frac{\text{pv}}{\text{L}}$ ・L1 = $\frac{43.106}{2.600}$ × 0.541 = 8.969 kN/m


鉛首力

$$N = \frac{1}{2} \cdot (pd + pv) \cdot L2 = \frac{1}{2} \times (8.969 + 43.106) \times 2.059 = 53.612 \text{ kN}$$

作用位置

$$x = \frac{pd + 2 \cdot pv}{pd + pv} \cdot \frac{L2}{3} = \frac{8.969 + 2 \times 43.106}{8.969 + 43.106} \times \frac{2.059}{3} = 1.254 \text{ m}$$

・土圧図

5.3.6 杭反力

鉛直力

$$N = (ni \cdot Pi)$$

作用位置

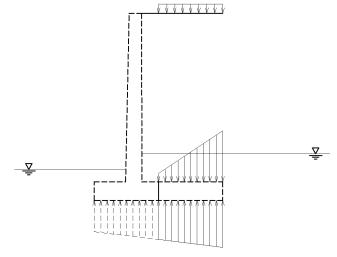
$$X = \frac{\sum ni \cdot Pi \cdot Xi}{\sum ni \cdot Pi}$$

ここに、

Pi:かかと版設計区間にある杭の鉛直反力 Xi:かかと版設計位置から杭位置までの距離

ni :杭本数

[1]常 時荷重 (高水位)


列番号	杭属性	杭位置まで の距離 Xi (m)	杭 本数 ni	杭反力 Pi (kN)	ni • Pi	ni • Pi • Xi
2	直	0.000	4	304.565	1218.26	0.00
3	直	-1.559	5	303.694	1518.47	-2367.30

$$ni \cdot Pi \cdot Xi = -2367.297$$

$$X = -2367.297 / 2736.732 = -0.865$$
 (m)

5.3.7 断面力の集計

[1]常 時荷重 (高水位)

項目	N _i (kN)	X, (m)	$M = N_i \cdot X_i$ $(kN.m)$
自 重	242.446	1.029	249.511
浮 力	-28.311	1.061	-30.030
載荷、雪	20.590	1.030	21.208
土 圧	53.612	1.254	67.254
杭反力	-273.673	0.865	-236.730
合 計	14.664		71.213

5.3.8 断面計算(許容応力度法)

(1)せん断応力度の照査

a > 2.5dの場合 $S_h = S - \frac{M}{d} \tan \theta$

a 2.5dの場合 S_h = S

ここに、

S_n:部材断面の有効高の変化の影響を考慮したせん断力(N)

d:フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

d':部材断面の有効高(mm)

b :部材断面幅(mm)

S:部材断面に作用するせん断力(N)

M :部材断面に作用する曲げモーメント(N.mm)

:フーチング上面と水平面のなす角度, = 0.000 , tan = 0.000

a :せん断スパン(mm)

荷重状態(水 位)	有効高 d' (cm)	2.5 • d	せん断スパン a (cm)	S (kN)	M (kN.m)	M/d'•tan	S _h (kN)
常 時荷重(高水位)	50.000	125.000	166.501	14.664	71.213	0.000	14.664

$$\tau_{\,\text{\tiny m}} \, = \, \frac{S_{\text{\tiny h}}}{\text{\tiny $b \cdot d'$}} \, \, \leqq \, \, \tau_{\,\text{\tiny al}}$$

ここに、

』: コンクリートの平均せん断応力度(N/mm²)

S_n:作用せん断力(N)

d: フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

d':部材断面の有効高(mm)

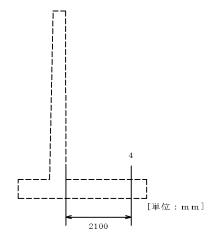
b :部材断面幅(mm)

S:部材断面に作用するせん断力(N)

a1: 割増しされた許容せん断応力度(N/mm²)

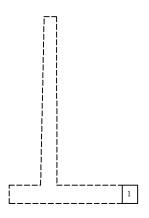
$$_{a1}$$
 = Ce · Cpt · Cdc · $_{a1}$ '

ここに、


』: コンクリートのみでせん断力を負担する場合の許容せん断応力度(N/mm²)

Ce:部材断面の有効高に関する補正係数 Cpt:引張主鉄筋比Ptに関する補正係数 Cdc:せん断スパン比に関する補正係数

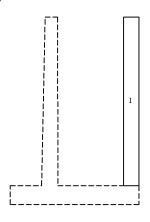
荷重状態(水 位)	せん断力	有効高	せん断応力度(N/mm²)		補正係数			
一 荷重状態(水 位) 	S _h (kN)	d'(cm)	計算値	許容値 a 許	容値 a2	Се	Cpt	Cdc
常 時荷重(高水位)	14.664	50.000	0.029	0.325	1.900	1.29	1.01	1.00


5.4 照査位置[4]の設計

付け根からの距離 = 2.100 m

5.4.1 水位を考慮しないブロックデータ

- (1)躯体自重
- 1)ブロック割り


2)自重・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	0.500 × 0.600 × 1.000	0.300	0.250	0.075	
		0.300		0.075	

重心位置 XG = (Vi·Xi) / Vi = 0.075 / 0.300 = 0.250 (m)

(2)背面土砂

1)ブロック割り

2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	0.500 × 5.400 × 1.000	2.700	0.250	0.675	
		2.700		0.675	

重心位置 XG = (Vi·Xi) / Vi = 0.675 / 2.700 = 0.250 (m)

5.4.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力

- (1)自重による作用力
- [1]常 時荷重

位置	鉛直力 W = ・ V (kN)	作用位置 X (m)
躯体	24.500 × 0.300 = 7.350	0.250

(2)土砂重量,浮力

[1]常 時荷重 (低水位)

1)土砂重量による作用力

水位位置による分割

	全体積、	重心位置	水位より下の体積、重心位置		
位 置	体 積	重心位置	体 (A)	重心位置	
	(m³)	(m)	(m³)	(m)	
土砂(背面)	2.700	0.250	0.000	0.000	

	水位より上の体積、重心位置				
位置	体 積 Vu (m³)	重心位置 Xu (m)			
土砂(背面)	2.700	0.250			

水位より上の体積

Vu = V - VI

水位より上の重心位置

 $Xu = (V \cdot X - VI \cdot XI) / Vu$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)
土砂(背面)	2.700 × 19.000 = 51.300	0.000 × 19.500 = 0.000

位置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)
土砂(背面)	51.300	0.250

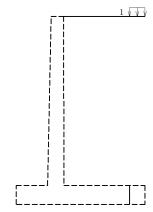
(3)自重集計

[1]常 時荷重 (低水位)

	重量 Ni (kN)	作用位置 Xi (m)	モーメント Ni・Xi (kN.m)	
躯 体	7.350	0.250	1.837	
背面土砂	51.300	0.250	12.825	
合 計	58.650		14.662	

5.4.3 地表面の載荷荷重,雪荷重

鉛直力


$$N = \frac{1}{2} \cdot (q1 + q2) \cdot L$$

ここに、

q : 地表面載荷荷重強度 L : 地表面載荷荷重長さ

X : 設計断面位置から合力作用点までの距離

[1]常 時荷重

番号	q1 (kN/m²)	q2 (kN/m²)	L (m)	鉛直力 N (kN)	作用位置 X (m)	
1	10.000	10.000	0.500	5.000	0.250	

5.4.4 土圧

[1]常 時荷重 (低水位)

土圧は試行くさび法により求める。

仮想背面の位置(つま先からの距離) xp = 4.118 m

yp = 0.000 m

仮想背面の高さ H = 6.000 m

仮想背面が鉛直面となす角度 = 0.000 °

背面土砂の単位体積重量 s = 19.000 kN/m³

背面土砂の内部摩擦角 = 35.000 °

壁面摩擦角 = 35.000 °

j = 10.00 ° ~ 80.00 °

すべり角()に対する土砂重量(W), 土圧力(P)

水位 hw = 0.000 m

すべり角		土圧力			
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
56.00	230.682	0.000	40.471	271.153	100.147
57.00	222.097	0.000	38.964	261.061	100.368
58.00	213.705	0.000	37.492	251.197	100.343

土圧力が最大となるのは、

= 57.00°のとき P = 100.368 kN

である。

土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

$$= \frac{261.061 \times \sin(57.00^{\circ} - 35.00^{\circ})}{\cos(57.00^{\circ} - 35.00^{\circ} - 0.000^{\circ} - 35.000^{\circ})}$$
= 100.368 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分

$$Ph = P \cdot \cos(+) = 100.368 \times \cos(0.000^{\circ} + 35.000^{\circ}) = 82.217 \text{ kN}$$

鉛直成分

$$Pv = P \cdot sin(+) = 100.368 \times sin(0.000° + 35.000°) = 57.569 kN$$
作用位置

Ho =
$$\frac{H}{3}$$
 = $\frac{6.000}{3}$ = 2.000 m

$$y = yp + Ho = 0.000 + 2.000 = 2.000 m$$

土圧の鉛直成分は、これと等価の三角形分布荷重とする。

$$pv = \frac{2 \cdot Pv}{L} = \frac{2 \times 57.569}{2.600} = 44.284 \text{ kN/m}$$

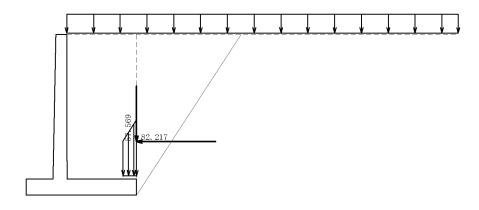
ここに、

pv:等価の三角形分布荷重

Pv: 土圧の鉛直成分 L:かかと版の長さ

付け根から設計断面位置までの距離 L1 = 2.100 m 設計断面位置より後方の分布荷重作用幅 L2 = 0.500 m

設計断面位置の分布荷重強度 $pd = \frac{pv}{L} \cdot L1 = \frac{44.284}{2.600} \times 2.100 = 35.768 \text{ kN/m}$


鉛直力

$$N = \frac{1}{2} \cdot (pd + pv) \cdot L2 = \frac{1}{2} \times (35.768 + 44.284) \times 0.500 = 20.013 \text{ kN}$$

作用位置

$$x = \frac{pd + 2 \cdot pv}{pd + pv} \cdot \frac{L2}{3} = \frac{35.768 + 2 \times 44.284}{35.768 + 44.284} \times \frac{0.500}{3} = 0.259 \text{ m}$$

・土圧図

5.4.5 杭反力

$$N = (ni \cdot Pi)$$

作用位置

$$X = \frac{\sum ni \cdot Pi \cdot Xi}{\sum ni \cdot Pi}$$

ここに、

Pi:かかと版設計区間にある杭の鉛直反力 Xi:かかと版設計位置から杭位置までの距離

ni :杭本数

[1]常 時荷重 (低水位)

列番号	杭属性	杭位置まで の距離 Xi (m)	杭 本数 ni	杭反力 Pi (kN)	ni • Pi	ni • Pi • Xi
3	直	0.000	5	341.838	1709.19	0.00

$$X = 0.000 / 1709.192 = 0.000$$
 (m)

5.4.6 断面力の集計

[1]常 時荷重 (低水位)

項目	N; (kN)	X, (m)	M = N _i • X _i (kN.m)
自 重	58.650	0.250	14.662
載荷、雪	5.000	0.250	1.250
土 圧	20.013	0.259	5.181
杭反力	-170.919	0.000	0.000
合 計	-87.256		21.093

5.4.7 断面計算(許容応力度法)

(1)せん断応力度の照査

$$a > 2.5d$$
の場合 $S_h = S - \frac{M}{d} \tan \theta$

a 2.5dの場合 S_h = S

ここに、

S_n:部材断面の有効高の変化の影響を考慮したせん断力(N)

d: フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

d':部材断面の有効高(mm)

b :部材断面幅(mm)

S:部材断面に作用するせん断力(N)

M :部材断面に作用する曲げモーメント(N.mm)

:フーチング上面と水平面のなす角度, = 0.000 , tan = 0.000

a :せん断スパン(mm)

荷重状態(水 位) 有効高 d' (cm)		2.5 • d	せん断スパン a (cm)	S (kN)	M (kN.m)	M/d'•tan	S₁ (kN)
常 時荷重(低水位)	50.000	125.000	235.900	87.256	21.093	0.000	-87.256

$$\tau_{\,\text{\tiny IM}} \, = \, \frac{S_h}{b \, \cdot d'} \, \, \leqq \, \, \tau_{\,\text{\tiny al}}$$

ここに、

』: コンクリートの平均せん断応力度(N/mm²)

S_n:作用せん断力(N)

d: フーチングの有効高で、柱あるいは壁前面及び背面の位置で求める(mm)

d':部材断面の有効高(mm)

b :部材断面幅(mm)

S :部材断面に作用するせん断力(N)

a: 割増しされた許容せん断応力度(N/mm²)

ここに、

a':コンクリートのみでせん断力を負担する場合の許容せん断応力度(N/mm²)

Ce: 部材断面の有効高に関する補正係数 Cpt: 引張主鉄筋比Ptに関する補正係数 Cdc: せん断スパン比に関する補正係数

荷重状態(水 位)	せん断力 有効高 S _n (kN) d'(cm)	せん断応力度(N/mm²)			補正係数			
19里状态(小 位)		d'(cm)	計算値	許容値 a1 許	容値 a2	Се	Cpt	Cdc
常 時荷重(低水位)	87.256	50.000	0.175	0.325	1.900	1.29	1.01	1.00