

詳細出力例

MANUCHO4

「土木構造物標準設計第2巻 擁壁類」 「L型擁壁 」03-RCL-45-H12の例の計算例

目次	
1章 設計条件	1
1.1 一般事項	1
1.2 適用基準	1
1.3 形式	1
1.4 形状寸法	1
1.5 地盤条件	1
1.6 使用材料	1
1.7 土砂	2
1.8 載荷荷重	3
1.9 その他荷重	3
1.10 土圧	3
1.11 基礎の条件	4
1.11.1 許容せん断抵抗算出用データ	4
1.12 安定計算の許容値及び部材の許容応力度	4
1.12.1 安定計算の許容値	4
1.12.2 部材の許容応力度	4
2章 安定計算	6
2.1 水位を考慮しないブロックデータ	6
2.2 躯体自重,土砂重量,その他荷重,浮力(揚圧力)による鉛直力、水平力	7
2.3 土圧・水圧	9
2.4 作用力の集計	11
2.5 安定計算結果	14
2.5.1 転倒に対する安定	14
2.5.2 滑動に対する安定	14
2.5.3 支持に対する照査	15
3章 竪壁の設計	16
3.1 竪壁基部の設計	16
3.1.1 水位を考慮しないブロックデータ	16
3.1.2 躯体自重,その他荷重	16
3.1.3 土圧・水圧	16
3.1.4 断面力の集計	17
3.1.5 断面計算(許容応力度法)	18
4章 かかと版の設計	20
4.1 照査位置[1]の設計	20
4.1.1 水位を考慮しないブロックデータ	20
4.1.2 躯体自重,土砂重量,その他荷重,浮力(揚圧力)による鉛直力	21
4.1.3 地表面の載荷荷重,雪荷重	22
4.1.4 地盤反力	23
4.1.5 断面力の集計	24
4.1.6 断面計算(許容応力度法)	24
4.2 照査位置[2]の設計	25
4.2.1 水位を考慮しないブロックデータ	26
4.2.2 躯体自重,土砂重量,その他荷重,浮力(揚圧力)による鉛直力	27
4.2.3 地盤反力	28
4.2.4 断面力の集計	28
4.2.5 断面計算(許容応力度法)	29

- 1 -

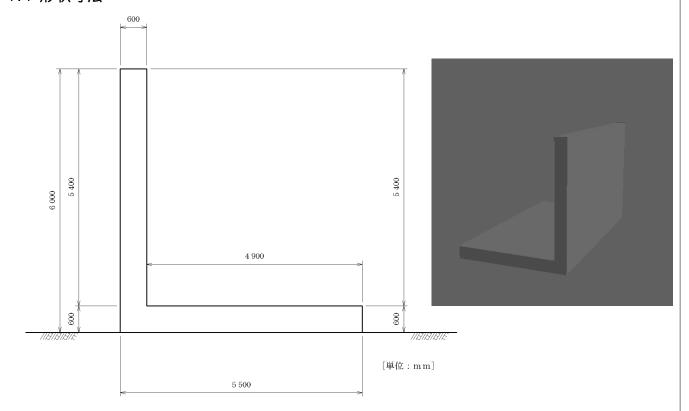
1章 設計条件

1.1 一般事項

データ名: MANUCHO4.f8r (コメント:標準設計 L型 RCL-45-H12)

タイトル:L型-B サンプルデータ

コメント:標準設計 L型 RCL-45-H12


1.2 適用基準

(社)全日本建設技術協会、土木構造物標準設計 第2巻 解説書(擁壁類) 平成12年9月

1.3 形式

『L型 - B(直接基礎)』

1.4 形状寸法

奥行方向幅(ブロック長) B = 10000(mm)

1.5 地盤条件

地震規模: 中規模 地域区分: A 地盤種別: I種

1.6 使用材料

【コンクリート】 竪壁(鉄筋コンクリート): $ck = 24 (N/mm^2)$ 底版(鉄筋コンクリート): $ck = 24 (N/mm^2)$

【鉄 筋】 種 類: SD345

【 内部摩擦角 】 背面 土砂: 25.00 (度)

【単位体積重量】

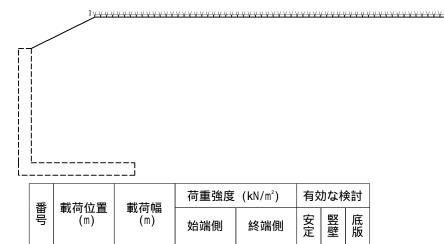
 (kN/m^3)

躯 体	体 鉄筋コンクリート 24.500		
水	浮力算出用	10	.000
	土 砂	湿潤重量	飽和重量
	背 面	18.000	19.000
	前 面	20.000	21.000

【設計水平震度】 躯 体: Kh = 0.15

土砂(前面): Kh = 0.15 (背面): Kh = 0.15

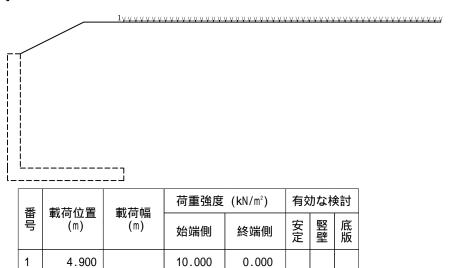
1.7 土砂


(1)背面土砂形状

擁壁天端と地表面始点のレベル差	(m)	0.000
勾配		2.000
盛土高	(m)	1.500
土圧を考慮しない高さHr	(m)	0.000

1.8 載荷荷重

[1]常時1


10.000

0.000

[2]常時2

1

3.000

1.9 その他荷重

考慮しない

1.10 土圧

・土圧の作用面の壁面摩擦角(度)

荷重状態		主働土圧		受働土圧
状態	安定計算時	断面計算時	切土	文側上江
常時	0.000	16.667		
地震時	0.000	16.667		

- ・安定計算時の土圧の仮想背面は、かかと端(かかとから鉛直に伸ばした線)
- ・安定計算時の土圧作用面が鉛直面となす角度 0.000 (度)

・竪壁設計時の土圧作用面が鉛直面となす角度 0.000 (度)

・粘着力(kN/m²)

荷重状態	すべり面用	粘着高さ用
常時	0.000	0.000
地震時	0.000	0.000

1.11 基礎の条件

1.11.1 許容せん断抵抗算出用データ

照査に用いる底版幅	有効載荷幅
基礎底面と地盤との間の付着力 CB (kN/m²)	0.000
基礎底面と地盤との間の摩擦係数tan 。	0.600

1.12 安定計算の許容値及び部材の許容応力度

1.12.1 安定計算の許容値

荷重状態	許容偏心量 e。/ B (m)	滑動安全率	許容 支持力度 (kN/m²)
常時1	1/6	1.500	300.000
常時2	1/6	1.500	300.000
地震時	1/3	1.200	450.000

ここに、

B :基礎幅(m)

 e_{B} : 荷重の偏心量(m) , ただし、 e_{B} = M_{B} / V M_{B} : 基礎底面に作用するモ - メント(kN.m) V : 基礎底面に作用する鉛直荷重(kN)

1.12.2 部材の許容応力度

(1)鉄筋コンクリート部材

1) 竪壁(水中部材)

 (N/mm^2)

荷重状態	割増係数	コンクリート の圧縮応力度	鉄筋の 引張応力度 sa	せん 応力 a1	v断 D度 a2
常時1	1.00	8.000	160.000	0.390	1.700
常時2	1.00	8.000	160.000	0.390	1.700
地震時 1.5		12.000	300.000	0.585	2.550

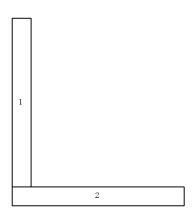
2) 底版(水中部材)

 (N/mm^2)

荷重状態	割増係数	コンクリート の圧縮応力度	鉄筋の 引張応力度 ೄ	せん 応力 a1	v断 D度 a2
常時1	1.00	8.000	160.000	0.390	1.700
常時2	1.00	8.000	160.000	0.390	1.700
地震時	1.50	12.000	300.000	0.585	2.550

ここに、

at : コンクリ - トのみでせん断力を負担する場合のせん断応力度

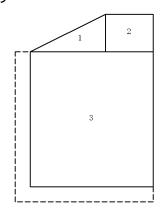

』: 斜引張鉄筋と協同して負担する場合のせん断応力度

2章 安定計算

2.1 水位を考慮しないブロックデータ

(1)躯体自重

1)ブロック割り



2)自重・重心

区分	計算式	体積	重心位置(m)		Vi • Xi	Vi • Yi	備考
分	幅 x 高さ x 奥行	Vi(m³)	Xi	Yi	VI • XI	VI • 11	1佣号
1 2	0.600 × 5.400 × 1.000 5.500 × 0.600 × 1.000	3.240 3.300	0.300 2.750	3.300 0.300	0.972 9.075	10.692 0.990	
		6.540			10.047	11.682	

(2)背面土砂

1)ブロック割り

2)体積・重心

区分	計算式	体積			Vi • Xi	Vi • Yi	備考
分	幅 x 高さ x 奥行	Vi(m³)	Xi	Yi	VIZXI	VI - 11	M# ~5
1 2 3	1/2 × 3.000 × 1.500 × 1.000 1.900 × 1.500 × 1.000 4.900 × 5.400 × 1.000	2.250 2.850 26.460	2.600 4.550 3.050	6.500 6.750 3.300	5.850 12.968 80.703	14.625 19.237 87.318	

区分	計算式	体積			Vi • Xi	Vi • Yi	備考
分	幅 × 高さ × 奥行	Vi(m³)	Xi	Yi	VI • XI	VITI	m -5
		31.560			99.520	121.180	

2.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力、水平力

- (1)自重による作用力
- [1]常時2

位	置	鉛直力 W = ・ V (kN)	作用位置 X (m)
躯	体	24.500 × 6.540 = 160.230	1.536

[2]地震時

位	置	鉛直力 W = ・V (kN)	作用位置 X (m)
躯	体	24.500 × 6.540 = 160.230	1.536

位	置	水平力 H = W · kh (kN)				作用位置 Y (m)	
躯	体	160.230	×	0.15	=	24.035	1.786

(2)土砂重量,浮力

[1]常時2

1)土砂重量による作用力

水位位置による分割

	全体積、重心位置			水位より下の体積、重心位置		
位 置	体 積	重心位置(m)		体積	重心位置(m)	
	V(m³)	X	Y	VI(m³)	ΧI	ΥI
土砂(背面)	31.560	3.153	3.840	0.000	0.000	0.000

	水位より上の体積、重心位置					
位 置	体 積 Vu(m³)	重心位置(m)				
	Vu(m³)	Xu	Yu			
土砂(背面)	31.560	3.153	3.840			

水位より上の体積

$$Vu = V - VI$$

水位より上の重心位置

$$Xu = (V \cdot X - VI \cdot XI) / Vu$$

 $Yu = (V \cdot Y - VI \cdot YI) / Vu$

土砂による作用力

位 置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)		
土砂(背面)	31.560 × 18.000 = 568.080	0.000 × 19.000 = 0.000		

位置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)
土砂(背面)	568.080	3.153

[2]地震時

1)土砂重量による作用力

水位位置による分割

	全体積、重心位置			水位より下の体積、重心位置		
位 置	体積	重心位置(m)		体 積	重心位置(m)	
	V (m³)	Х	Y	VI(m³)	ΧI	ΥI
土砂(背面)	31.560	3.153	3.840	0.000	0.000	0.000

	水位より上の体積、重心位置					
位 置	体積	重心位置(m)				
	Vu (m³)	Xu	Yu			
土砂(背面)	31.560	3.153	3.840			

水位より上の体積

Vu = V - VI

水位より上の重心位置

 $Xu = (V \cdot X - VI \cdot XI) / Vu$ $Yu = (V \cdot Y - VI \cdot YI) / Vu$

土砂による作用力

位 置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)	
土砂(背面)	31.560 x 18.000 = 568.080	0.000 × 19.000 = 0.000	

位置	重量 W 作用位置 X (Wu・Xu+WI・XI)/W (kN) (m)		水平力 H W ・ kh (kN)	作用位置 Y (m)
土砂(背面)	568.080	3.153	568.080 × 0.15 = 85.212	3.840

(3)自重集計

[1]常時2

		重量 Ni Ni Hi		作用位置(m)		モーメント(kN.m)	
		(kN)	(kN)	Xi	Yi	Ni • Xi	Hi • Yi
躯	体	160.230	0.000	1.536	0.000	246.151	0.000
背面	i土砂	568.080	0.000	3.153	0.000	1791.369	0.000
合	計	728.310	0.000			2037.521	0.000

[2]地震時

重量		水平力 Hi	作用位	ኒ置(m)	モーメント(kN.m)		
		(kN)	(kN)	Xi	Yi	Ni • Xi	Hi • Yi
躯	体	160.230	24.035	1.536	1.786	246.151	42.931
背面	主砂	568.080	85.212	3.153	3.840	1791.369	327.187
合	計	728.310	109.246			2037.521	370.118

2.3 土圧・水圧

[1]常時2

土圧は試行くさび法により求める。

仮想背面の位置(つま先からの距離) xp = 5.500 m

yp = 0.000 m

仮想背面の高さ H = 7.500 m

仮想背面が鉛直面となす角度 = 0.000 ° 背面土砂の単位体積重量 s = 18.000 kN/m³

背面土砂の内部摩擦角 = 25.00 °

壁面摩擦角 = = 0.000°

i = 10.00 ° ~ 85.00 °

すべり角()に対する土砂重量(W), 土圧力(P)

水位 hw = 0.000 m

すべり角		土圧力			
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
56.00	341.470	0.000	50.588	392.058	235.572
57.00	328.763	0.000	48.706	377.469	235.869
58.00	316.340	0.000	46.865	363.205	235.868

土圧力が最大となるのは、

である。

土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

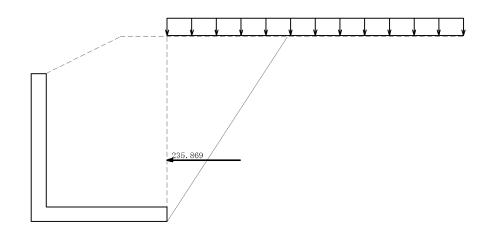
$$= \frac{377.469 \times \sin(57.00^{\circ} - 25.00^{\circ})}{\cos(57.00^{\circ} - 25.00^{\circ} - 0.000^{\circ} - 0.000^{\circ})}$$
= 235.869 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分

Ph =
$$P \cdot \cos($$
 + $) = 235.869 \times \cos(0.000 ^{\circ} + 0.000 ^{\circ}) = 235.869 \text{ kN}$

鉛直成分


$$Pv = P \cdot sin(+) = 235.869 \times sin(0.000 ° + 0.000 °) = 0.000 kN$$
作用位置

Ho =
$$\frac{\text{H}}{3}$$
 = $\frac{7.500}{3}$ = 2.500 m

$$x = xp - Ho \cdot tan = 5.500 - 2.500 \times tan0.000 \circ = 5.500 m$$

$$y = yp + Ho = 0.000 + 2.500 = 2.500 m$$

・土圧図

[2]地震時

土圧は試行くさび法により求める。

仮想背面の位置(つま先からの距離) xp = 5.500 m

yp = 0.000 m

仮想背面の高さ H = 7.500 m

仮想背面が鉛直面となす角度 = 0.000 °

背面土砂の単位体積重量 s = 18.000 kN/m³

背面土砂の内部摩擦角 = 25.00 °

壁面摩擦角 = = 0.000°

j = 10.00 ° ~ 85.00 °

すべり角()に対する土砂重量(W), 土圧力(P)

水位 hw = 0.000 m

すべり角		土圧力			
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
56.00	341.470	0.000	0.000	341.470	205.176
57.00	328.763	0.000	0.000	328.763	205.434
58.00	316.340	0.000	0.000	316.340	205.434

土圧力が最大となるのは、

である。

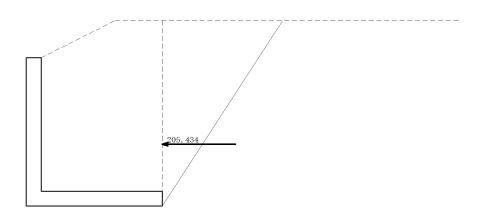
土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

$$= \frac{328.763 \times \sin(57.00^{\circ} - 25.00^{\circ})}{\cos(57.00^{\circ} - 25.00^{\circ} - 0.000^{\circ} - 0.000^{\circ})}$$
= 205.434 kN

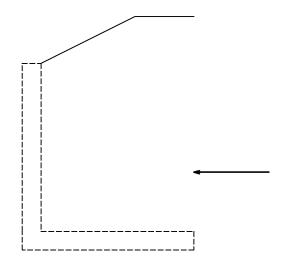
このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

水平成分


Ph =
$$P \cdot \cos($$
 + $) = 205.434 \times \cos(0.000 ^{\circ} + 0.000 ^{\circ}) = 205.434 \text{ kN}$
官成分

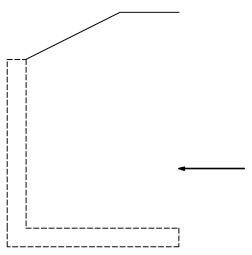
 $Pv = P \cdot sin(+) = 205.434 \times sin(0.000 \circ + 0.000 \circ) = 0.000 kN$ 作用位置

Ho =
$$\frac{H}{3}$$
 = $\frac{7.500}{3}$ = 2.500 m


$$x = xp - Ho \cdot tan = 5.500 - 2.500 \times tan0.000 \circ = 5.500 m$$

 $y = yp + Ho = 0.000 + 2.500 = 2.500 m$

・土圧図


2.4 作用力の集計

- (1)フーチング前面での作用力の集計
- [1]常時2

項	目	鉛直力	水平力	アー	ム長	回転モーメ	ント(kN.m)
切	Р	N _i (kN)	H _i (kN)	X, (m)	Y _i (m)	$M_{xi} = N_i \cdot X_i$	$M_{yi} = H_i \cdot Y_i$
自	重	728.310	0.000	2.798	0.000	2037.521	0.000
土	圧	0.000	235.869	5.500	2.500	0.000	589.672
合	計	728.310	235.869			2037.521	589.672

[2]地震時

項目		鉛直力	水平力	アーム長		回転モーメント(kN.m)	
以	目 N _i (kN)		H⊢ (kN)	X, (m)	Y, (m)	$M_{xi} = N_i \cdot X_i$	$M_{yi} = H_i \cdot Y_i$
自	重	728.310	109.246	2.798	3.388	2037.521	370.118
土	圧	0.000	205.434	5.500	2.500	0.000	513.585
合	計	728.310	314.681			2037.521	883.703

荷重状態 (水 位)	N₀ (kN)	H₀ (kN)	M₀ (kN.m)
常時2	728.310	235.869	1447.848
地震時	728.310	314.681	1153.817

(2)フーチング中心での作用力の集計

 鉛 直 力
 : N_c = N_c
 (kN)

 水 平 力
 : H_c = H_c
 (kN)

回転モーメント : M。= No・Bj/2.0-Mo (kN.m)

ここに、

フーチング土圧方向幅 : B_i = 5.500 (m)

単位幅当り

荷重状態(水 位)	N₀ (kN)	H₀ (kN)	M₀ (kN.m)
常時2	728.310	235.869	555.004
地震時	728.310	314.681	849.035

全幅(10.000m)当り

荷重状態(水 位)	N₅ (kN)	H₅ (kN)	M _c (kN.m)
常時2	7283.100	2358.690	5550.045
地震時	7283.100	3146.805	8490.353

2.5 安定計算結果

2.5.1 転倒に対する安定

$$\mathrm{d} \; = \; \frac{\Sigma \, \mathrm{Mr} - \Sigma \, \mathrm{Mt}}{\Sigma \, \mathrm{V}}$$

ここに、

d : 底版つま先から合力の作用点までの距離(m) Mr: 底版つま先回りの抵抗モーメント(kN.m) Mt: 底版つま先回りの転倒モーメント(kN.m)

V : 底版下面における全鉛直荷重(kN)

$$e = \frac{B}{2} - d$$

ここに、

e:合力の作用点の底版中央からの偏心距離(m)

B:底版幅(m), B = 5.500

 $e_a = B/n$

ここに、

ea:許容偏心距離(m)

n:安全率

荷重状態 (水 位)	Mr	Mt	V	d	e	e _a
	(kN.m)	(kN.m)	(kN)	(m)	(m)	(m)
常時2	2037.521	589.672	728.310	1.988	0.762	0.917

2.5.2 滑動に対する安定

$$F_s = \frac{\Sigma V \cdot \mu + C_B \cdot B'}{\Sigma H}$$

ここに、

V:底版下面における全鉛直荷重(kN) H:底版下面における全水平荷重(kN)

μ:底版と支持地盤の間の摩擦係数,μ=0.600

C_B:底版と支持地盤の間の付着力(kN/m²), C_B = 0.000

B':有効載荷幅(m), B' = B - 2e

B:底版幅(m), B = 5.500

e :偏心量(m)

荷重状態 (水 位)	偏心量 e(m)	有効載荷幅 B'(m)
地震時	1.166	3.168

荷重状態(水 位)	鉛直荷重	水平荷重	安全率	必要安全率
	V(kN)	H(kN)	F _s	F _{sa}
地震時	728.310	314.681	1.389	1.200

2.5.3 支持に対する照査

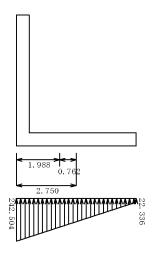
1)合力作用点が底版中央の底版幅1/3(ミドルサード)の中にある場合

$$q_1 \; = \; \frac{\Sigma \, V}{B} \, \boldsymbol{\cdot} \, \left(1 + \frac{6 \mathrm{e}}{B} \right)$$

$$q_2 = \frac{\sum V}{B} \cdot \left(1 - \frac{6e}{B}\right)$$

2)合力作用点が底版中央の底版幅2/3の中にある場合

$$q_1 = \frac{2 \Sigma V}{3 \cdot (B/2 - e)}$$

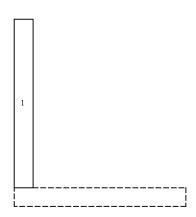

ここに、

V : 底版下面に作用する全鉛直荷重(kN)

B :底版幅(m), B = 5.500

e :偏心量(m)

[1]常時2



地盤反力の地盤反力		地盤反力度 (kN/m²)			
作用幅(m) x及びB	の形状	qmin	qmax	許容値	
5.500	台 形	22.336	242.504	300.000	

3章 竪壁の設計

3.1 竪壁基部の設計

- 3.1.1 水位を考慮しないブロックデータ
 - (1)ブロック割り

(2)体積・重心

	重心位置(m) 計算式 体積		位置(m)				
分	幅 × 高さ × 奥行	Vi (m³)	Xi	Yi	Vi • Xi	Vi•Yi	備考
•	0.600 × 5.400 × 1.000	3.240	0.300	2.700	0.972	8.748	
		3.240			0.972	8.748	

重心 XG =
$$(Vi \cdot Xi)$$
 / Vi = 0.972 / 3.240 = 0.300 (m) YG = $(Vi \cdot Yi)$ / Vi = 8.748 / 3.240 = 2.700 (m)

3.1.2 躯体自重,その他荷重

- (1)躯体自重
- [1]常時1

位置	W = • V	作用位置 X (m)
躯体(鉄筋)	24.500 × 3.240 = 79.380	0.000

3.1.3 土圧・水圧

[1]常時1

土圧は試行くさび法により求める。

仮想背面の位置 (断面中心からの距離) xp = 0.300 m

yp = 0.000 m

仮想背面の高さ H = 5.400 m 仮想背面が鉛直面となす角度 = 0.000 °

背面土砂の単位体積重量 s = 18.000 kN/m³ 背面土砂の内部摩擦角 = 25.000 °

壁面摩擦角 = 2/3 = 16.667 °

i = 10.00 ° ~ 85.00 °

すべり角()に対する土砂重量(W), 土圧力(P)

水位 hw = 0.000 m

すべり角		土圧力			
(°)	水位以上	水位以下	上載荷重	合計	P (kN)
48.00	345.314	0.000	32.128	377.442	148.384
49.00	331.981	0.000	29.981	361.962	148.437
50.00	319.046	0.000	27.898	346.944	148.190

土圧力が最大となるのは、

である。

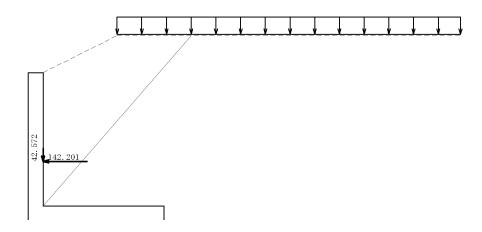
土圧力

$$P = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \alpha - \delta)}$$

$$= \frac{361.962 \times \sin(49.00^{\circ} - 25.00^{\circ})}{\cos(49.00^{\circ} - 25.00^{\circ} - 0.000^{\circ} - 16.667^{\circ})}$$
= 148.437 kN

このときの土圧力の水平成分、鉛直成分、作用位置は次のようになる。

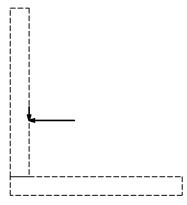
水平成分


 $Pv = P \cdot sin(+) = 148.437 \times sin(0.000 \circ + 16.667 \circ) = 42.572 kN$ 作用位置

Ho =
$$\frac{\text{H}}{3}$$
 = $\frac{5.400}{3}$ = 1.800 m

$$x = Ho \cdot tan - xp = 1.800 \times tan0.000 \circ -0.300 = -0.300 m$$

$$y = yp + Ho = 0.000 + 1.800 = 1.800 m$$


・土圧図

3.1.4 断面力の集計

(偏心モーメント及び軸力を無視するため鉛直力は集計されません)

[1]常時1

項	目	N _i (kN)	H, (kN)	X, (m)	Y, (m)	$M = M_{xi} + M_{yi}$ (kN.m)
自	重	79.380	0.000	0.000	0.000	0.000
土	圧	42.572	142.201	-0.300	1.800	255.962
合	計	0.000	142.201			255.962

Xi は設計断面中心からの距離(前面側に向かって+)、Yi は設計断面からの高さ

3.1.5 断面計算(許容応力度法)

(1)鉄筋配置

位置	位 かぶり 鉄 鉄筋面積 (cm)		本数	鉄筋量 (cm²)		
前	1'		_			
前面	2'		_			
背面	1	10.0	D25	5.067	8.00	40.536
面	2		_			

引張側必要鉄筋量 36.511 (cm²)

(2)曲げ応力度の照査

(参考)

中立軸の算出

$$x^{2} + \frac{2 \cdot n}{b} \{As \cdot (x-d)\} = 0.0$$

よりxを求める。

応力度の算出

$$\sigma_{\circ} = \frac{M}{\frac{b \cdot x}{2} \cdot \left(\frac{h}{2} - \frac{x}{3}\right) + n \cdot As \cdot \frac{(x-d) \cdot (h/2-d)}{x}}$$

$$\sigma_{\circ} = n \cdot \sigma_{\circ} \cdot \frac{d-x}{x}$$

ここに、

x :コンクリートの圧縮縁から中立軸までの距離(mm)

h :部材断面の高さ(mm), h = 600.000 b :部材断面幅(mm), b = 1000.000

d :部材の有効高(mm)

As : 引張側鉄筋の全断面積(mm²)

n :鉄筋とコンクリートのヤング係数比, n = 15.00

e:部材断面の図心軸から軸方向力の作用点までの距離(mm)

c:コンクリートの曲げ圧縮応力度(N/mm²)

s:鉄筋の引張応力度(N/mm²) M:曲げモーメント(N.mm)

芸事化能 (ルー位)	М	N (kN)	x (cm)	圧縮応力度(N/mm²)		引張応力度(N/mm²)	
荷重状態(水 位)	(kN.m)			計算値	許容値	計算値	許容値
常時1	255.962	0.000	19.321	6.085	8.000	144.934	160.000

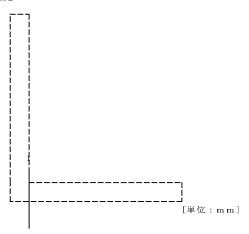
(3)せん断応力度の照査

$$au_{\,\text{\tiny II}} \, = \, rac{S_h}{b \cdot d} \, \, \leqq \, \, au_{\,\text{\tiny al}}$$

ここに、

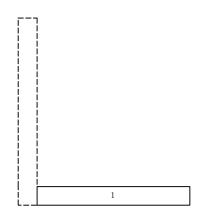
":コンクリートのせん断応力度(N/mm²)

S_n :作用せん断力(N) d :部材断面の有効高(mm)


b :部材断面幅(mm)

荷重状態(水 位)	せん断力	有効高	せん断応力度(N/mm²)			
何里休忠(小 位)	S _h (kN)	d(cm)	計算值	許容値 a1	許容値 a2	
常時1	142.201	50.000	0.284	0.390	1.700	

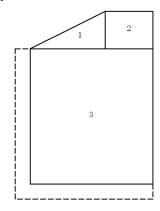
4章 かかと版の設計


4.1 照査位置[1]の設計

付け根からの距離 = 0.000 m

4.1.1 水位を考慮しないブロックデータ

- (1)躯体自重
- 1)ブロック割り


2)自重・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	4.900 × 0.600 × 1.000	2.940	2.450	7.203	
		2.940		7.203	

重心位置 XG = (Vi·Xi) / Vi = 7.203 / 2.940 = 2.450 (m)

(2)背面土砂

1)ブロック割り

2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1 2 3	1/2× 3.000× 1.500× 1.000 1.900× 1.500× 1.000 4.900× 5.400× 1.000	2.250 2.850 26.460	2.000 3.950 2.450	4.500 11.257 64.827	
		31.560		80.584	

- 4.1.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力
 - (1)自重による作用力
 - [1]常時1

位置	鉛直力 W = ・ V (kN)	作用位置 X (m)
躯体	24.500 × 2.940 = 72.030	2.450

(2)土砂重量,浮力

[1]常時1

1)土砂重量による作用力

水位位置による分割

	全体積、	重心位置	水位より下の体積、重心位置		
位 置	体積	重心位置	体 積 VI	重心位置	
	(m³)	(m)	(m³)	(m)	
土砂(背面)	31.560	2.553	0.000	0.000	

	水位より上の体積、重心位置				
位 置	体 積 Vu	重心位置 Xu			
	(m³)	(m)			
土砂(背面)	31.560	2.553			

水位より上の体積

Vu = V - VI

水位より上の重心位置

$$Xu = (V \cdot X - VI \cdot XI) / Vu$$

土砂による作用力

位置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)		
土砂(背面)	31.560 × 18.000 = 568.080	0.000 × 19.000 = 0.000		

位置	重量 W Wu + WI (kN)	作用位置 X (Wu・Xu+WI・XI)/W (m)
土砂(背面)	568.080	2.553

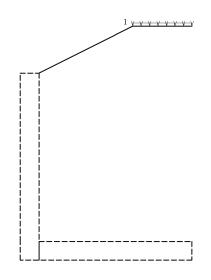
(3)自重集計

[1]常時1

	重 量 Ni (kN)	作用位置 Xi (m)	モーメント Ni・Xi (kN.m)
躯 体	72.030	2.450	176.474
背面土砂	568.080	2.553	1450.308
合 計	640.110		1626.781

4.1.3 地表面の載荷荷重,雪荷重

鉛直力


$$N = \frac{1}{2} \cdot (q1 + q2) \cdot L$$

ここに、

q :地表面載荷荷重強度 L :地表面載荷荷重長さ

X:設計断面位置から合力作用点までの距離

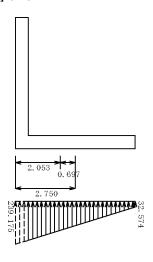
[1]常時1

番号	q1 (kN/m²)	q2 (kN/m²)	L (m)	鉛直力 N (kN)	作用位置 X (m)
1	10.000	10.000	1.900	19.000	3.950

4.1.4 地盤反力

鉛直力

$$N = \frac{1}{2} (q1 + q2) \cdot L$$


作用位置

$$X = \frac{2 \cdot q1 + q2}{3 \cdot (q1 + q2)} \cdot L$$

ここに、

q1 : かかと版前面位置の地盤反力度 q2 : かかと版設計位置の地盤反力度 L : 地盤反力作用幅 L = 4.900 (m)

[1]常時1

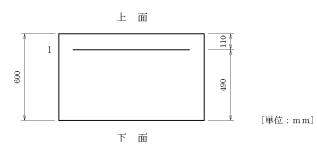
地盤反力度	麦(kN/m²)	鉛直力作用位置		
q1	q2	N (kN)	X (m)	
32.574	216.637	610.566	1.847	

4.1.5 断面力の集計

[1]常時1

項目	N _i (kN)	X; (m)	M = N _i • X _i (kN.m)
自 重	640.110	2.541	1626.781
載荷、雪	19.000	3.950	75.050
地盤反力	-610.566	1.847	-1127.609
合 計	48.544		574.223

竪壁基部の断面力


M1 = 255.962 kN.m

かかと版付け根の断面力 M3 = 574.223 kN.m

M3 > M1 となったので、付け根の断面力として M1 を適用します。

4.1.6 断面計算(許容応力度法)

(1)鉄筋配置

位置	立置	かぶり (cm)	鉄 筋 径	鉄筋面積 (cm²/本)	本 数	鉄筋量 (cm²)
上	1	11.0	D25	5.067	8.00	40.536
上面	2		_			
下	1'		_			
亩	2'					

引張側必要鉄筋量 37.350 (cm²)

(2)曲げ応力度の照査

(参考)

中立軸の算出

$$x^2 + \frac{2 \cdot n}{b} \{As \cdot (x-d)\} = 0.0$$

よりxを求める。

応力度の算出

$$\sigma_{\circ} = \frac{M}{\frac{b \cdot x}{2} \cdot \left(\frac{h}{2} - \frac{x}{3}\right) + n \cdot As \cdot \frac{(x-d) \cdot (h/2-d)}{x}}$$

$$\sigma_{\circ} = n \cdot \sigma_{\circ} \cdot \frac{d-x}{x}$$

ここに、

x : コンクリートの圧縮縁から中立軸までの距離(mm)

h :部材断面の高さ(mm), h = 600.000 b :部材断面幅(mm), b = 1000.000

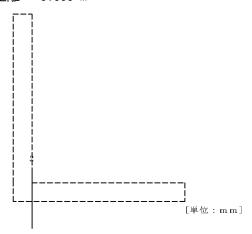
d :部材の有効高(mm)

As : 引張側鉄筋の全断面積(mm²)

n : 鉄筋とコンクリートのヤング係数比, n = 15.00

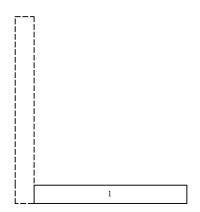
e :部材断面の図心軸から軸方向力の作用点までの距離(mm)

c:コンクリートの曲げ圧縮応力度(N/mm²)


s:鉄筋の引張応力度(N/mm²)

M :曲げモーメント(N.mm)

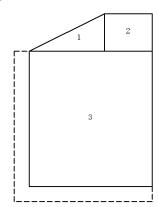
荷重状態(水 位)	M (kN.m)	x (cm)	圧縮応力度(N/mm²)		引張応力度(N/mm²)	
荷重状態(水 位) 			計算値	許容値	計算値	許容値
常時1	255.962	19.072	6.292	8.000	148.102	160.000


4.2 照査位置[2]の設計

付け根からの距離 = 0.000 m

4.2.1 水位を考慮しないブロックデータ

- (1)躯体自重
- 1)ブロック割り


2)自重・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1	4.900 × 0.600 × 1.000	2.940	2.450	7.203	
		2.940		7.203	

重心位置 XG = (Vi·Xi) / Vi = 7.203 / 2.940 = 2.450 (m)

(2)背面土砂

1)ブロック割り

2)体積・重心

区分	計算式 幅 × 高さ × 奥行	体積 Vi (m³)	重心位置 Xi (m)	Vi • Xi	備考
1 2 3	1/2× 3.000× 1.500× 1.000 1.900× 1.500× 1.000 4.900× 5.400× 1.000	2.250 2.850 26.460	2.000 3.950 2.450	4.500 11.257 64.827	
		31.560		80.584	

重心位置 XG = (Vi·Xi) / Vi = 80.584 / 31.560 = 2.553 (m)

4.2.2 躯体自重, 土砂重量, その他荷重, 浮力(揚圧力)による鉛直力

- (1)自重による作用力
- [1]常時1、地震時

位置	鉛直力 W = ・ V (kN)	作用位置 X (m)
躯体	24.500 × 2.940 = 72.030	2.450

(2)土砂重量,浮力

[1]常時1、地震時

1)土砂重量による作用力

水位位置による分割

	全体積、	重心位置	水位より下の体積、重心位置		
位置	体 積 V (m³)	重心位置 X (m)	体 積 VI (m³)	重心位置 XI (m)	
土砂(背面)	31.560	2.553	0.000	0.000	

	水位より上の体積、重心位置		
位置	体 積 Vu (m³)	重心位置 Xu (m)	
土砂(背面)	31.560	2.553	

水位より上の体積

Vu = V - VI

水位より上の重心位置

 $Xu = (V \cdot X - VI \cdot XI) / Vu$

土砂による作用力

位 置	水位より上の重量 Wu = Vu・(土の湿潤重量) (kN)	水位より下の重量 WI = VI・(土の飽和重量) (kN)		
土砂(背面)	31.560 × 18.000 = 568.080	0.000 × 19.000 = 0.000		

位置	重量 W Wu + WI (kN)	作用位置 X (Wu·Xu+WI·XI)/W (m)
土砂(背面)	568.080	2.553

(3)自重集計

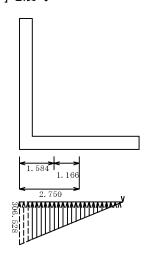
[1]地震時

	重量 Ni (kN)	作用位置 Xi (m)	モーメント Ni・Xi (kN.m)
躯 体	72.030	2.450	176.474
背面土砂	568.080	2.553	1450.308
合 計	640.110		1626.781

4.2.3 地盤反力

鉛直力

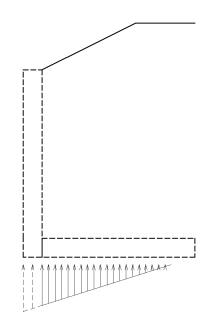
$$N = \frac{1}{2}(q1+q2) \cdot L$$


作用位置

$$X = \frac{2 \cdot q1 + q2}{3 \cdot (q1 + q2)} \cdot L$$

ここに、

q1 : かかと版前面位置の地盤反力度 q2 : かかと版設計位置の地盤反力度 L : 地盤反力作用幅 L = 4.900 (m)


[1]地震時

地盤反力度(kN/m²)		鉛直力	作用位置	
q1	q2	N (kN)	X (m)	
0.000	267.825	556.005	1.384	

4.2.4 断面力の集計

[1]地震時

項	■	N _i (kN)	X, (m)	$M = N_i \cdot X_i$ $(kN.m)$
自	重	640.110	2.541	1626.781
地盤反	カ	-556.005	1.384	-769.510
合	計	84.105		857.271

4.2.5 断面計算(許容応力度法)

(1)せん断応力度の照査

$$au_{\,\scriptscriptstyle m} = rac{S_h}{b \cdot d} \, \leq \, au_{\,\scriptscriptstyle al}$$

ここに

": コンクリートの平均せん断応力度(N/mm²)

S_h : 作用せん断力(N) d : 部材の有効高(mm) b : 部材断面幅(mm)

at: コンクリートのみでせん断力を負担する場合の許容せん断応力度(N/mm²)

荷重状態(水 位)	せん断力 S _^ (kN)	有効高 d(mm)	せん断応力度(N/mm²)	
			計算値	午容値 a1
地震時	84.105	490.000	0.172	0.585