二重締切工の設計 サンプルデータ

出力例

sample-3堤体

鋼矢板 3堤体のサンプルデータ

目次	
1章 設計条件	1
1.1 基本データ	1
1.2 形状	1
1.3 考え方	2
1.4 地層データ	3
1.5 部材	3
1.5 検討ケースデータ	4
1.7 円弧すべり	6
1.8 排水量データ	6
1.9 柱状図	7
2章 検討ケース (常時)	8
2.1 外力の計算	8
2.1.1 安定計算時の土圧・水圧強度表	8
2.1.2 堤内側矢板計算時の土圧・水圧強度表	10
2.1.3 堤外側矢板計算時の土圧・水圧強度表	12
2.2 安定計算	13
2.2.1 壁体のせん断変形破壊に対する検討	13
2.2.2 壁体の滑動に対する検討	21
2.2.3 基礎地盤の支持力に対する検討	23
2.3 堤内側矢板	26
2.3.1 根入れ長の計算	26
2.3.2 壁体断面力の計算	28
2.3.3 壁体応力度	36
2.3.4 引張材応力度	37
2.3.5 腹起し材応力度	38
2.3.6 4C > hの検討	39
2.4 堤外側矢板	40
2.4.1 根入れ長の計算	40
2.4.2 壁体断面力の計算	42
2.4.2 室体的面分の計算 2.4.3 壁体応力度	50
2.4.3 室体心力度 2.4.4 引張材応力度	51
2.4.5 腹起し材応力度	52
2.4.5 展起し付心力度 2.4.6 4C> hの検討	53
3章 検討ケース(地震時)	53 54
3草 快割ケース(地震時) 3.1 外力の計算	54 54
3.1.1 安定計算時の土圧・水圧強度表	
	54
3.1.2 堤内側矢板計算時の土圧・水圧強度表	57
3.1.3 堤外側矢板計算時の土圧・水圧強度表	58
3.2 安定計算	59
3.2.1 壁体のせん断変形破壊に対する検討	59
3.2.2 壁体の滑動に対する検討	70
3.2.3 基礎地盤の支持力に対する検討	72
3.3 堤内側矢板	75
3.3.1 根入れ長の計算	75
3.3.2 壁体断面力の計算	77
3.3.3 壁体応力度	85
3.3.4 引張材応力度	86
3.3.5 腹起し材応力度	87
3.3.6 4C> hの検討	88

3.4 堤外側矢板	89
3.4.1 根入れ長の計算	89
3.4.2 壁体断面力の計算	91
3.4.3 壁体応力度	99
3.4.4 引張材応力度	100
3.4.5 腹起し材応力度	101
3.4.6 4C> hの検討	102
4章 遮水効果の検討	103
5章 円弧すべりの検討	104
5.1 常時	104
5.1.1 検討条件	104
5.1.2 検討結果	105
5.2 地震時	106
5.2.1 検討条件	106
5.2.2 検討結果	107
6章 円弧すべり結果詳細(常時)	108
6.1 安定計算条件	108
6.1.1 設計条件	108
6.1.2 計算条件	108
6.1.3 形状・属性	108
6.1.4 土質物性値一覧	113
6.2 臨界面の計算結果	114
6.2.1 臨界面の詳細結果	114
6.2.2 格子点安全率	121
7章 円弧すべり結果詳細(地震時)	122
7.1 安定計算条件	122
7.1.1 設計条件	122
7.1.2 計算条件	122
7.1.3 形状・属性	123
7.1.4 土質物性値一覧	126
7.2 臨界面の計算結果	127
7.2.1 臨界面の詳細結果	127
7.2.2 格子点安全率	134

1章 設計条件

ファイル名: sample-3堤体

1.1 基本データ

(1)堤体規模

決定堤体幅 : 8.000(m) 堤内側決定矢板長 : 18.500(m) 堤外側決定矢板長 : 19.000(m)

(2)基本データ

タイトル: 粘性土地盤の計算例 (高水時 + 地震時)コメント: 粘性土地盤の計算例 (高水時 + 地震時)

壁体種類: 鋼矢板水位の影響: 考慮する水の単位体積重量* : 10.00(kN/m³)地震時の検討: 検討する液状化時の検討: 検討しない堤外側矢板の照査: 検討する

引張材設置位置

No	設置位置 G.L.(m)
1 2	7.500 0.500

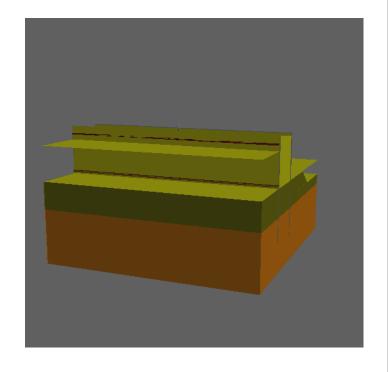
1.2 形状

(1)平面

堤体延長

堤体	内壁延長	角度	設計対象
No	(m)	(度)	堤体
1 2 3	40.000 40.000 40.000	135.000 135.000	

堤体方向:垂直


中詰土天端: G.L. 8.000(m)堤内側矢板天端: G.L. 8.500(m)堤外側矢板天端: G.L. 9.000(m)

法面付き掘削形状

掘削深さ : 3.000 (m) 掘削勾配 (1:n) : 1.50 堤内側マウンド幅 : 10.000 (m) 斜面の影響を考慮した受働土圧の算定:考慮しない

(3)引張材平面配置

引張材調整範囲設置方法 : 端部1/2間隔配置

堤体1

	標準ピッチ	開始側部	調整範囲	終了側調整範囲		
段	信号学にサデ (m)	LS (m)	本数 (本)	LE (m)	本数 (本)	
1 2	2.000 2.000	3.000 3.000	3 3	3.00 3.00	2 2	

堤体2

	標準ピッチ	開始側部	調整範囲	終了側調整範囲		
段	1宗年 に り J	LS	本数	LE	本数	
	(m)	(m)	(本)	(m)	(本)	
1 2	2.000	3.000	2	3.00	2	
	2.000	3.000	2	3.00	2	

堤体3

	標準ピッチ	開始側部	調整範囲	終了側調整範囲		
段	作品 (m) 	LS (m)	本数 (本)	LE (m)	本数 (本)	
1 2	2.000 2.000	3.000 3.000	2 2	3.00 3.00	3 3	

1.3 考え方

(1)照査項目

4・C> hの照査 : 引張材以下で検討する 遮水効果に対する照査 : 砂質地盤扱いで検討する

排水量の検討 : 検討しない 円弧すべりに対する照査 : 検討する 支持力係数の確認・変更 : 行わない

(2)設計方法

せん断変形破壊時の考え方

最小安全率となる位置の検索: 検討しない同上検索ピッチ: 1.00(m)

自重の計算方法 : 設計マニュアルに準ずる

極限平衡法において引張材より上の外力の扱い : 考慮しない

弾塑性解析および液状化時断面力計算条件

引張材バネ計算時のゆるみを表す係数 : 1.0 地盤バネ計算時の換算載荷幅BH : 10.0m

地震時における変形係数 Eoの扱い : 常時(入力値)の2.00倍とする

壁体先端支持条件: 自由計算ピッチ: 0.20(m)弾塑性解析時による弾性域の検討: 検討しない同上必要弾性領域率: 50.0%

残留水位の設計

残留水位の設定(堤外水位-堤内水位)×比率:0.500

1.4 地層データ

(1)中詰土の土性

m±±+	土の	D単位重量	Ī	内 部	粘 着	カ
土種	湿 潤 kN/m³	水 中 kN/m³	飽 和 kN/m³	摩擦角 (度)	Co kN/m²	増分k kN/m³
砂質土	18.0	10.0	20.0	30.0	0.0	0.0

(2)堤外区間 (現地盤面G.L. 0.000m)

	層厚	 		土の単位重量			内部 粘着		力変形係数	
No	眉 字 M	種類	N値	湿 潤 kN/m³	水 中 kN/m³	飽 和 kN/m³	摩擦角 (度)	Co kN/m²	増分k kN/m³	Eo kN/m²
1	5.000 10.000	粘性土 砂質土	15.0 15.0	16.0 18.0	6.0 10.0	17.0 20.0	0.0 30.0	20.0 0.0	0.0 0.0	42000 42000

(3)堤体区間(現地盤面G.L. 0.000m)

		層厚地	地盤平均		土	土の単位重量			内 部		変形係数
No) 	序 M	種類	を N値	湿 潤kN/m³	水 中 kN/m³	飽和 kN/m³	摩擦角 (度)	Co kN/m²	増分kN/m³	Eo kN/m²
2		5.000 0.000	粘性± 砂質±	15.0 15.0	16.0 18.0	6.0 10.0	17.0 20.0	0.0 30.0	20.0 0.0	0.0 0.0	42000 42000

(4)堤内区間(現地盤面G.L. 0.000m)

	層厚に	地盤	平均	土の単位重量			内 部 摩擦角	粘 着	カ	変形係数
No	眉 字 M	種類	N値	湿 潤 kN/m³	水 中 kN/m³	飽 和 kN/m³	摩擦角 (度)	Co kN/m²	増分 k kN/m³	Eo kN/m²
1 2	5.000 10.000	粘性土 砂質土	15.0 15.0	16.0 18.0	6.0 10.0	17.0 20.0	0.0 30.0	20.0 0.0	0.0 0.0	42000 42000

1.5 部材

(1)壁体データ

鋼矢板の有効率

断面2次モーメント用(応力変形計算時) : 0.45 断面係数用 : 0.60

堤内側

使用する鋼矢板 : VL型 使用する材質 : SY295 矢板前面の無効層厚 : 0.000 (m) 根入れ照査時の地盤の評価:砂質地盤

堤外側

使用する鋼矢板 : VL型 使用する材質 : SY295 矢板前面の無効層厚 : 0.000 (m) 根入れ照査時の地盤の評価:砂質地盤

(2)引張材、腹起し材データ

引張材

	設置位置	引張材	引張材	引張材	引張材	引張材	引張村	オバネ強度	腹起し材
No	G.L.(m)	バネ引 張特性	水平間隔	の直径 mm	材 質番 号	本数	直接入力	バネ強度 kN/m/m	の材質
1 2	7.500 0.500	無効無効	2.000 2.000	25.0 85.0	7 7	1	しない しない		\$\$400 \$\$400

腹起し材

腹起し材: 溝形鋼腹起し照査式: TL / 10

1.5 検討ケースデータ

(1)検討ケース[常時扱い]

検討ケース名 : 常時

内部設定

土圧の扱い	地盤バネの扱い	許容値の扱い
常時	常時	常時

水位条件

・安定計算と堤内側矢板検討時

堤外側水位: G.L.6.400(m)堤内側水位: G.L.0.000(m)

・堤外側矢板検討時

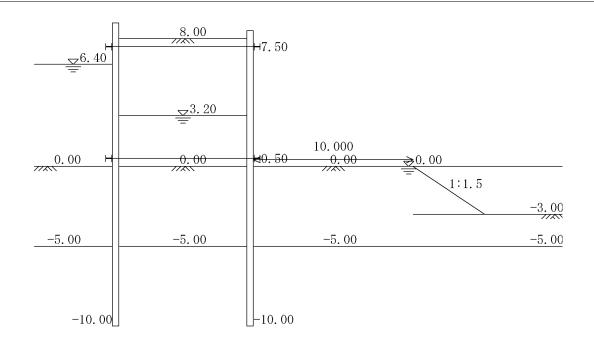
堤体残留水位 : G.L. 0.000(m) 堤外側水位 : G.L. 0.000(m)

上載荷重

区間	堤外区間	堤体区間	堤内区間
荷重強度 (kN/m²)	0.00	0.00	0.00

その他荷重

安定計算用


その他荷重はありません。

堤内側矢板用

・鉛直力(応力度照査用) : 0.00(kN/m)

堤外側矢板用

・鉛直力(応力度照査用) : 0.00(kN/m)

-15.00 -15.00 -15.00 -15.00

(2)検討ケース[地震時扱い]

検討ケース名: 地震時

内部設定

土圧の扱い	地盤バネの扱い	許容値の扱い
地震時	地震時	地震時

設計震度

・設計震度 : 0.10

・見掛け震度の考え方:河川基準式

せん断変形破壊時の照査面より上抵抗モーメントの扱い : 地震時扱い

水位条件

・安定計算と堤内側矢板検討時

堤外側水位: G.L.0.000(m)堤内側水位: G.L.0.000(m)

・堤外側矢板検討時

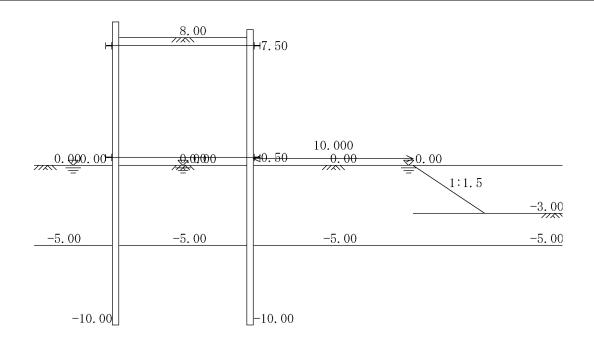
堤体残留水位: G.L.0.000(m)堤外側水位: G.L.0.000(m)

上載荷重

区間	堤外区間	堤体区間	堤内区間	
荷重強度 (kN/m²)	0.00	0.00	0.00	

その他荷重

安定計算用


その他荷重はありません。

堤内側矢板用

・鉛直力(応力度照査用) : 0.00(kN/m)

堤外側矢板用

・鉛直力(応力度照査用) : 0.00(kN/m)

1.7 円弧すべり

円弧すべり式 : 設計マニュアル式

すべり半径の刻み R: 1.00 (m)スライス分割幅 b: 0.80 (m)表層すべりの制限(最小すべり幅) : 0.00 (m)

検討する地形の範囲(堤外側Bout) : 50 (m)

(堤内側Bin) : 50(m)

法面付きの堤内側水位線の扱い:掘削形状に添うものとする

上載荷重の扱い: 考慮しないその他の荷重の扱い: 考慮する

1.8 排水量データ

排水量の検討はしません。

1.9 柱状図

深度(m)	土質記号	N値 0 10 20 30 40 50
-3. 20		
0.00		-
0.00		
8. 00		
	/ •\•/•/•	
20.00		

2章 検討ケース(常時)

2.1 外力の計算

2.1.1 安定計算時の土圧・水圧強度表

安定計算時に用いる水圧・土圧強度表を示す。

(1)水圧強度表(堤外区間:作用外力)

H.W.L. 6.400(m) L.W.L. 0.000(m)

壁体先端地盤種類:砂質土

No	深 さ GL(m)	層 厚 h (m)	水圧強度 pw kN/m²
1	6.400 3.200	3.200	0.00 32.00
2	3.200 0.500	2.700	32.00 59.00
3	0.500 0.000	0.500	59.00 64.00
4	0.000 -5.000	5.000	64.00 64.00
5	-5.000 -10.000	5.000	64.00 32.00

(2)主働土圧強度表(堤外区間:作用外力)

$$pa = Ka (h+q) - 2c Ka$$

$$Ka = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}(\theta) \cdot [1 + \sqrt{-(\sin \phi \cdot \sin(\phi - \theta) / \cos \theta)}]^{2}}$$

ただし、 = 0度とする。

1	No	深 さ GL(m)	層 厚 h (m)	土の単重	内 部摩擦角	粘着力 c kN/m²	有 効 上 載 圧 rh+q kN/m²	土 圧 係 数 Ka	主 働 土圧強度 pa kN/m²	採用 土圧強度 pa kN/m²
	1	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	1.000	-40.00 -10.00	0.00 0.00
	2	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	30.00 130.00	0.333	10.00 43.33	10.00 43.33

(3)受働土圧強度表(堤内区間:作用外力)

$$pp = Kp (h+q) + 2c Kp$$

$$Kp = \frac{\cos^2(\phi - \theta)}{\cos^2(\theta) \cdot [1 - \sqrt{-(\sin \phi \cdot \sin(\phi - \theta) / \cos \theta)}]^2}$$

ただし、 = 0度とする。

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 部摩擦角	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	土 圧 係 数 Kp	受働 土圧強度 pp kN/m²
1	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	1.000	40.00 70.00
2	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	30.00 130.00	3.000	90.00 390.00

(4)主働土圧強度表(堤体区間:照査面より上の抵抗モーメント計算時)

No	深 さ GL(m)	層 厚 h (m)	土の 単重	内 摩擦角 (度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	土 圧 係 数 Ka	主 働 土圧強度 pa kN/m²	採用 土圧強度 pa kN/m²
1	8.000 6.400	1.600	18.0	30.00	0.0 0.0	0.00 28.80	0.333	0.00 9.60	0.00 9.60
2	6.400 3.200	3.200	18.0	30.00	0.0 0.0	28.80 86.40	0.333	9.60 28.80	9.60 28.80
3	3.200 0.500	2.700	10.0	30.00	0.0	86.40 113.40	0.333	28.80 37.80	28.80 37.80
4	0.500 0.000	0.500	10.0	30.00	0.0 0.0	113.40 118.40	0.333	37.80 39.47	37.80 39.47
5	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	118.40 148.40	1.000	78.40 108.40	78.40 108.40
6	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	148.40 248.40	0.333	49.47 82.80	49.47 82.80

(5)受働土圧強度表 (堤体区間:照査面より上の抵抗モーメント計算時)

No	深 さ GL(m)	層 厚 h (m)	土の 単重	内 摩擦角 (度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	土 圧 係 数 Kp	受 働 土圧強度 pp kN/m²
1	8.000 6.400	1.600	18.0	30.00	0.0 0.0	0.00 28.80	3.000	0.00 86.40
2	6.400 3.200	3.200	18.0	30.00	0.0 0.0	28.80 86.40	3.000	86.40 259.20
3	3.200 0.500	2.700	10.0	30.00	0.0	86.40 113.40	3.000	259.20 340.20
4	0.500 0.000	0.500	10.0	30.00	0.0 0.0	113.40 118.40	3.000	340.20 355.20
5	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	118.40 148.40	1.000	158.40 188.40
6	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	148.40 248.40	3.000	445.20 745.20

(6)受働土圧強度表(堤外区間:照査面より下の受働抵抗モーメント用)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 部 摩擦角 (度)	粘着力 c kN/m²	有 効 上 載 圧 rh+q kN/m²	土 圧 係 数 Kp	受 土圧強度 pp kN/m²
1	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	1.000	40.00 70.00
2	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	30.00 130.00	3.000	90.00 390.00

2.1.2 堤内側矢板計算時の土圧・水圧強度表

堤内側矢板計算時に用いる水圧・土圧強度表を示す。

(1)水圧強度表(堤体区間)

R.W.L. 3.200(m)

L.W.L. 0.000(m)

壁体先端地盤種類:砂質土

No	深 さ GL(m)	層 厚 h (m)	水圧強度 pw kN/m²
1	3.200 0.500	2.700	0.00 27.00
2	0.500 0.000	0.500	27.00 32.00
3	0.000 -5.000	5.000	32.00 32.00
4	-5.000 -10.000	5.000	32.00 0.00

(2)主働土圧強度表(堤体区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 部摩擦角	粘着力 c kN/m²	有 効 上 載 圧 rh+q kN/m²	土 圧 係 数 Ka	主 働 土圧強度 pa kN/m²	採用 土圧強度 pa kN/m²
1	8.000 6.400	1.600	18.0	30.00	0.0 0.0	0.00 28.80	0.333	0.00 9.60	0.00 9.60
2	6.400 3.200	3.200	18.0	30.00	0.0 0.0	28.80 86.40	0.333	9.60 28.80	9.60 28.80
3	3.200 0.500	2.700	10.0	30.00	0.0 0.0	86.40 113.40	0.333	28.80 37.80	28.80 37.80
4	0.500 0.000	0.500	10.0	30.00	0.0 0.0	113.40 118.40	0.333	37.80 39.47	37.80 39.47
5	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	118.40 148.40	1.000	78.40 108.40	78.40 108.40
6	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	148.40 248.40	0.333	49.47 82.80	49.47 82.80

(3)受働土圧強度表(堤内区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 摩擦角 (度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	土 圧 係 数 Kp	受働 土圧強度 pp kN/m²
1	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	1.000	40.00 70.00
2	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	30.00 130.00	3.000	90.00 390.00

は無効層で解析上の土圧強度は0扱いとする

(4)静止土圧強度表(堤内区間)

po = Ko (h+q)

No	深 さ GL(m)	層 厚 h (m)	土の 単重	有 効 上載圧 rh+q kN/m²	土 圧 係 数 Ko	静 土圧強度 po kN/m²
1	0.000 -5.000	5.000	6.0	0.00 30.00	0.500	0.00 15.00
2	-5.000 -15.000	10.000	10.0	30.00 130.00	0.500	15.00 65.00

は無効層で解析上の土圧強度は0扱いとする

2.1.3 堤外側矢板計算時の土圧・水圧強度表

堤外側矢板計算時に用いる水圧・土圧強度表を示す。

(1)水圧強度表(堤体区間)

R.W.L. 0.000(m)

L.W.L. 0.000(m)

壁体先端地盤種類:砂質土

水圧強度=0

(2)主働土圧強度表(堤体区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 部摩擦角	粘着力 c kN/m²	有 効 上 載 圧 rh+q kN/m²	土 圧 係 数 Ka	主 働 土圧強度 pa kN/m²	採用 土圧強度 pa kN/m²
1	8.000 0.500	7.500	18.0	30.00	0.0 0.0	0.00 135.00	0.333	0.00 45.00	0.00 45.00
2	0.500 0.000	0.500	18.0	30.00	0.0 0.0	135.00 144.00	0.333	45.00 48.00	45.00 48.00
3	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	144.00 174.00	1.000	104.00 134.00	104.00 134.00
4	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	174.00 274.00	0.333	58.00 91.33	58.00 91.33

(3)受働土圧強度表(堤外区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 摩擦角 (度)	粘着力 c kN/m²	有 効 上 載 圧 rh+q kN/m²	土 圧 係 数 Kp	受 働 土圧強度 pp kN/m²
1	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	1.000	40.00 70.00
2	-5.000 -15.000	10.000	10.0	30.00	0.0	30.00 130.00	3.000	90.00 390.00

は無効層(解析上は無効層扱いとする)

(4)静止土圧強度表(堤外区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	有 効 上載圧 rh+q kN/m²	土 圧 係 数 Ko	静 土圧強度 po kN/m²
1	0.000 -5.000	5.000	6.0	0.00 30.00	0.500	0.00 15.00
2	-5.000 -15.000	10.000	10.0	30.00 130.00	0.500	15.00 65.00

は無効層(解析上は無効層扱いとする)

2.2 安定計算

2.2.1 壁体のせん断変形破壊に対する検討

(1)結果要旨

1)照査式

壁体幅B = 8.000、高さH = 8.000(m)について、下式にて照査を行う。

$$\frac{Mr}{Md} \ge FS$$

ここに、

FS:必要安全率(1.20)

Md: 照査面におけるせん断変形モーメント (kN・m/m) Mr: 照査面におけるせん断抵抗モーメント (kN・m/m)

$$Mr = Mro \times (1 + \frac{d}{H}) + Msp$$

$$Mro = (pRP - pRA) ydy$$

ここに、

Mro:中詰土の基準せん断抵抗モーメント

d :現地盤面から照査面深さ

H:壁体高さ(壁体天端から堤体区間の現地盤まで) pRP:照査面から上方yの位置の受働土圧強度(kN/m²) pRA:照査面から上方yの位置の主働土圧強度(kN/m²) y:pRP、pRAが作用する照査面からの距離(m)

yo:中詰部の仮想すべり面の交点の座標

Msp:2列の矢板が発揮する抵抗モーメント 堤内側と堤外側の矢板の抵抗の小さい方で代表させ、2倍で評価。

Msp = 2 x (Msp1またはMsp2のうち小さい値)

Msp1:矢板が発揮できる抵抗モーメント

 $Msp1 = a \cdot Zsp$

a:使用矢板の許容応力度(N/mm²)

Zsp:使用矢板の継手効率を考慮した断面係数(mm³/m) Msp2:照査面以深の根入れ地盤が支持できる抵抗モーメント

 $Msp2 = Ppu \times hpu$

Ppu: 照査面下から矢板先端までの受働土圧合力

hpu: Ppuの照査面からの作用距離

2) 各照査面における照査結果

照査箇所名	照 査 面	照査面の	変形モーメント	抵抗モーメント	安全率
	G.L.(m)	深さd	Md (kN.m/m)	Mr (kN.m/m)	F
根入れ先端	-10.000	10.000	1996.02	6310.67	3.16 1.20
地層境界面	-5.000	5.000	1635.91	1720.40	1.05 < 1.20
現地盤面	0.000	0.000	436.91	2202.71	5.04 1.20

(2)照査面(根入れ先端: G.L.-10.000m)

1)照査結果

項	目	数 値
変形モーメント	Md(kN.m/m)	1996.02
抵抗モーメント	Mr(kN.m/m)	6310.67
安全率	Mr / Md	3.16 1.20

2)変形モーメント (Md) の算定

変形モーメント内訳	モーメント
水圧モーメント Mw 主働土圧モーメント Ma 受働土圧モーメント - Mp その他荷重モーメント Mc	5551.57 194.44 3750.00 0.00
変形モーメント Md(kN.m/m)	1996.02

a.水圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pw kN/m²	水平力 Pw kN/m	アーム長 y m	モーメント Mw kN.m/m
1	6.400 3.200	3.200	0.00 32.00	51.20	14.267	730.45
2	3.200 0.500	2.700	32.00 59.00	122.85	11.716	1439.37
3	0.500 0.000	0.500	59.00 64.00	30.75	10.247	315.08
4	0.000 -5.000	5.000	64.00 64.00	320.00	7.500	2400.00
5	-5.000 -10.000	5.000	64.00 32.00	240.00	2.778	666.67
				764.80		5551.57

b.主働土圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pa kN/m²	水平力 Pa kN/m	アーム長 y m	モーメント Ma kN.m/m
1	0.000 -5.000	5.000	0.00 0.00	0.00	7.500	0.00
2	-5.000 -10.000	5.000	10.00 26.67	91.67	2.121	194.44
				91.67		194.44

c.受働土圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	0.000 -5.000	5.000	40.00 70.00	275.00	7.273	2000.00
2	-5.000 -10.000	5.000	90.00 240.00	825.00	2.121	1750.00
				1100.00		3750.00

d.その他荷重モーメント

- Pc = 0.00(kN.m/m)
- Mc = 0.00(kN.m/m)

3)抵抗モーメント (Mr) の算定

抵抗モーメント内訳	モーメント
Mro·(1+d/H) Msp=2×min(Msp1、Msp2) Msp1 Msp2	6310.67 0.00 340.20 0.00
抵抗モーメント Mr(kN.m/m)	6310.67

a. 照査面より上の抵抗モーメント

計算に使用する地層条件は、堤体区間とする。

 $Mro \cdot (1+d/H) = 2804.74 \times (1 + 1.250) = 6310.67(kN.m/m)$

アーム長 = 照査面から層下面までの距離 + (h/3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	受働強度 pRP kN/m²	主働強度 pRA kN/m²	側圧強度 pRP-pRA kN/m²	水平力 Pr kN/m	アーム長 y m	モーメント Mro kN.m/m
1	-6.536 -10.000	3.464	491.28 595.20	54.59 66.13	436.69 529.07	1672.70	1.677	2804.74
						1672.70		2804.74

b.yoの計算過程

照査面と堤外側矢板の交点を開始点として上方に受働崩壊面を、同じく堤内側矢板の交点を開始点として上方に主働崩壊面を想定する。

両者の崩壊面の交点位置が、高さyoとなる。また、交点幅は堤体幅になる。ただし、交点の高さyoが壁体天端より上になる場合は、交点高さを壁体天端までとし、この場合の交点幅は堤体幅以下になる。よって、下表の崩壊幅の合計値が堤体幅と同じ場合はyoが堤体天端以下にあることがわかり、堤体幅以下の場合は、yoは堤体天端までとしていることがわかる。

	深	ਣ	層厚	内 部 摩擦角	内 部 地震時	受働崩壊面		主働崩壊面		崩壊幅
No	上 面 GL(m)	下 面 GL(m)	h (m)	摩擦角 (度)	合成角 (度)	崩壊角 p度	崩壊幅Bp m	崩壊角 a度	崩壊幅Ba m	Bp + Ba m
1	-6.536	-10.000	3.464	30.00	0.00	30.00	6.000	60.00	2.000	8.000
交点幅 Bp + Ba									8.000	

・受働崩壊面

$$Bp = cot(p) \times h$$

$$\cot(\xi p) = \tan(\phi) + \sec(\phi) \sqrt{\frac{\cos(-\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$p = 90.0 - tan^{-1}(cot(p))$$

・主働崩壊面

$$Ba = \cot(a) \times h$$

$$\cot(\xi a) = -\tan(\phi) + \sec(\phi) \sqrt{-\frac{\cos(\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$a = 90.0 - tan^{-1}(cot(a))$$

- ・sin() 0の場合は、cot(p) = cot(a) = tan()+sec()とする。
- c.照査面より下の受働抵抗モーメント

$$Msp = 2 \times min (Msp1, Msp2)$$

$$= 2 \times min (340.20, 0.00) = 0.00(kN.m/m)$$

d.矢板の抵抗モーメント(Msp1)の計算

堤内側か堤外側のいすれか小さい方で代表させる。

項	目	単	位	堤内側矢板		堤外側矢板	
使用鋼材名 補正前の断面係数 断面係数用有効率 計算に用いる断面係数 許容応力度	Z Z a	× 10 ⁻⁶ r × 10 ⁻⁶ r × 10 ⁻⁶ k	 n³/m	VL型	3150 0.60 1890 180.0	VL型	3150 0.60 1890 180.0
抵抗モーメントMsp1 =	a× Z	kN	• m/m		340.20		340.20

e. 照査面より下の受働土圧モーメント(Msp2)の計算

矢板の抵抗モーメントは、照査面より下の受働抵抗モーメントより大きくなり得ないため照査面を 支点とした受働土圧モーメントを求める。

計算に使用する地層条件は、堤外区間で代表させることとする。

ただし、照査面が根入れ先端なので、Msp2 = 0.0(kN・m/m)である。

(3) 照査面 (地層境界面: G.L. -5.000m)

1)照査結果

項	目	数 値
変形モーメント	Md(kN.m/m)	1635.91
抵抗モーメント	Mr(kN.m/m)	1720.40
安全率	Mr / Md	1.05 < 1.20

2)変形モーメント (Md)の算定

変形モーメント内訳		モーメント
水圧モーメント 主働土圧モーメント 受働土圧モーメント その他荷重モーメント	Mw Ma - Mp Mc	2260.91 0.00 625.00 0.00
変形モーメント	Md(kN.m/m)	1635.91

a.水圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pw kN/m²	水平力 Pw kN/m	アーム長 y m	モーメント Mw kN.m/m
1	6.400 3.200	3.200	0.00 32.00	51.20	9.267	474.45
2	3.200 0.500	2.700	32.00 59.00	122.85	6.716	825.12
3	0.500 0.000	0.500	59.00 64.00	30.75	5.247	161.33
4	0.000 -5.000	5.000	64.00 64.00	320.00	2.500	800.00
				524.80		2260.91

b. 主働土圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pa kN/m²	水平力 Pa kN/m	アーム長 y m	モーメント Ma kN.m/m
1	0.000 -5.000	5.000	0.00 0.00	0.00	2.500	0.00
				0.00		0.00

c. 受働土圧モーメント

アーム長 = 照査面から層下面までの距離 + (h/3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	0.000 -5.000	5.000	40.00 70.00	275.00	2.273	625.00
				275.00		625.00

d. その他荷重モーメント

- Pc = 0.00(kN.m/m)
- Mc = 0.00(kN.m/m)

3)抵抗モーメント (Mr) の算定

抵抗モーメント内訳	モーメント
Mro · (1 + d / H) Msp = 2 × min (Msp1, Msp2) Msp1 Msp2	1040.00 680.40 340.20 2375.00
抵抗モーメント Mr(kN.m/m)	1720.40

a. 照査面より上の抵抗モーメント

計算に使用する地層条件は、堤体区間とする。

 $Mro \cdot (1+d/H) = 640.00 \times (1+0.625) = 1040.00(kN.m/m)$

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	受働強度 pRP kN/m²	主働強度 pRA kN/m²	側圧強度 pRP-pRA kN/m²	水平力 Pr kN/m	アーム長 y m	モーメント Mro kN.m/m
1	-1.000 -5.000	4.000	164.40 188.40	84.40 108.40	80.00 80.00	320.00	2.000	640.00
						320.00		640.00

b.yoの計算過程

照査面と堤外側矢板の交点を開始点として上方に受働崩壊面を、同じく堤内側矢板の交点を開始点として上方に主働崩壊面を想定する。

両者の崩壊面の交点位置が、高さyoとなる。また、交点幅は堤体幅になる。ただし、交点の高さyoが壁体天端より上になる場合は、交点高さを壁体天端までとし、この場合の交点幅は堤体幅以下になる。よって、下表の崩壊幅の合計値が堤体幅と同じ場合はyoが堤体天端以下にあることがわかり、堤体幅以下の場合は、yoは堤体天端までとしていることがわかる。

	深	ਣੇ	層厚		内上部	内部			内 部	内部地震時	受働崩壊面		主働崩壊面		崩壊幅
No	上 面 GL(m)	下 面 GL(m)	h (m)	摩擦角 (度)	合成角 (度)	崩壊角 p度	崩壊幅Bp	崩壊角 a度	崩壊幅Ba	Bp + Ba m					
1	-1.000	-5.000	4.000	0.00	0.00	45.00	4.000	45.00	4.000	8.000					
交点	点幅 Bp+B	交点幅 Bp + Ba													

・受働崩壊面

$$Bp = cot(p) \times h$$

$$\cot(\xi p) = \tan(\phi) + \sec(\phi) \sqrt{-\frac{\cos(-\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$p = 90.0 - tan^{-1}(cot(p))$$

・主働崩壊面

$$Ba = \cot(a) \times h$$

$$\cot(\xi a) = -\tan(\phi) + \sec(\phi) \sqrt{-\frac{\cos(\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$a = 90.0 - tan^{-1}(cot(a))$$

- ・sin() 0の場合は、cot(p) = cot(a) = tan()+sec()とする。
- c.照査面より下の受働抵抗モーメント

$$Msp = 2 \times min (Msp1, Msp2)$$

$$= 2 \times min (340.20, 2375.00) =$$

2375.00) = 680.40(kN.m/m)

d.矢板の抵抗モーメント(Msp1)の計算

堤内側か堤外側のいすれか小さい方で代表させる。

項	目	単	位	堤内的	側矢板	堤外·	側矢板
使用鋼材名 補正前の断面係数 断面係数用有効率 計算に用いる断面係数 許容応力度	Z Z a	× 10 ⁻⁶ n × 10 ⁻⁶ n × 10 ⁻⁶ n	 n³/m	VL型	3150 0.60 1890 180.0	VL型	3150 0.60 1890 180.0
抵抗モーメントMsp1 =	a× Z	kN	• m/m		340.20		340.20

e. 照査面より下の受働土圧モーメント(Msp2)の計算

矢板の抵抗モーメントは、照査面より下の受働抵抗モーメントより大きくなり得ないため照査面を 支点とした受働土圧モーメントを求める。

計算に使用する地層条件は、堤外区間で代表させることとする。

アーム長 = 照査面から層上面までの距離 + (h/3) x (p1 + 2 x p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	-5.000 -10.000	5.000	90.00 240.00	825.00	2.879	2375.00
				825.00		2375.00

(4) 照査面 (現地盤面 : G.L. 0.000m)

1)照査結果

項	目	数 値
変形モーメント	Md(kN.m/m)	436.91
抵抗モーメント	Mr(kN.m/m)	2202.71
安全率	Mr/Md	5.04 1.20

2)変形モーメント (Md) の算定

変形モーメント内訳	モーメント
水圧モーメント Mw 主働土圧モーメント Ma 受働土圧モーメント - Mp その他荷重モーメント Mc	436.91 0.00 0.00 0.00
変形モーメント Md(kN.m/m)	436.91

a.水圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pw kN/m²	水平力 Pw kN/m	アーム長 y m	モーメント Mw kN.m/m
1	6.400 3.200	3.200	0.00 32.00	51.20	4.267	218.45
2	3.200 0.500	2.700	32.00 59.00	122.85	1.716	210.87
3	0.500 0.000	0.500	59.00 64.00	30.75	0.247	7.58
				204.80		436.91

b.主働土圧モーメント

0.00kN/m

Ma =

0.00kN.m/m

c.受働土圧モーメント

Pp = 0.00kN/m

Mp = 0.00kN.m/m

d.その他荷重モーメント

- Pc = 0.00(kN.m/m)
- Mc = 0.00(kN.m/m)

3)抵抗モーメント (Mr) の算定

抵抗モーメント内訳	モーメント
Mro · (1 + d / H) Msp = 2 × min (Msp1、Msp2) Msp1 Msp2	1522.31 680.40 340.20 7250.00
抵抗モーメント Mr(kN.m/m)	2202.71

a. 照査面より上の抵抗モーメント

計算に使用する地層条件は、堤体区間とする。

 $Mro \cdot (1+d/H) = 1522.31 \times (1 + 0.000) = 1522.31(kN.m/m)$

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	受働強度 pRP kN/m²	主働強度 pRA kN/m²	側圧強度 pRP-pRA kN/m²	水平力 Pr kN/m	アーム長 y m	モーメント Mro kN.m/m
1	3.464 3.200	0.264	244.94 259.20	27.22 28.80	217.73 230.40	59.15	3.331	197.02
2	3.200 0.500	2.700	259.20 340.20	28.80 37.80	230.40 302.40	719.28	1.789	1286.93
3	0.500 0.000	0.500	340.20 355.20	37.80 39.47	302.40 315.73	154.53	0.248	38.36
						932.97		1522.31

b.yoの計算過程

照査面と堤外側矢板の交点を開始点として上方に受働崩壊面を、同じく堤内側矢板の交点を開始点

として上方に主働崩壊面を想定する。

両者の崩壊面の交点位置が、高さyoとなる。また、交点幅は堤体幅になる。ただし、交点の高さyoが壁体天端より上になる場合は、交点高さを壁体天端までとし、この場合の交点幅は堤体幅以下になる。よって、下表の崩壊幅の合計値が堤体幅と同じ場合はyoが堤体天端以下にあることがわかり、堤体幅以下の場合は、yoは堤体天端までとしていることがわかる。

	深	ੇ ਟ	層厚	内 部	地震時	受働	崩壊面	主働	崩壊面	崩壊幅
No	上 面 GL(m)	下 面 GL(m)	h (m)	内部地摩擦角合(度)	擦角 合成角 (度) (度)	崩壊角 p度	崩壊幅Bp	崩壊角 a度	崩壊幅Ba m	Bp + Ba m
1 2 3	3.464 3.200 0.500	3.200 0.500 0.000	0.264 2.700 0.500	30.00 30.00 30.00	0.00 0.00 0.00	30.00 30.00 30.00	0.457 4.677 0.866	60.00 60.00 60.00	0.152 1.559 0.289	0.610 6.235 1.155
交点	交点幅 Bp + Ba								8.000	

・受働崩壊面

$$Bp = cot(p) \times h$$

$$\cot(\xi p) = \tan(\phi) + \sec(\phi) \sqrt{-\frac{\cos(-\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$p = 90.0 - tan^{-1}(cot(p))$$

・主働崩壊面

$$Ba = \cot(a) \times h$$

$$\cot(\xi a) = -\tan(\phi) + \sec(\phi) \sqrt{-\frac{\cos(\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$a = 90.0 - tan^{-1}(cot(a))$$

c. 照査面より下の受働抵抗モーメント

 $Msp = 2 \times min (Msp1, Msp2)$

$$= 2 \times min (340.20, 7250.00) = 680.40(kN.m/m)$$

d.矢板の抵抗モーメント(Msp1)の計算

堤内側か堤外側のいすれか小さい方で代表させる。

項	目	単	位	堤内·	側矢板	堤外	側矢板
使用鋼材名 補正前の断面係数 断面係数用有効率 計算に用いる断面係数 許容応力度	Z Z a	× 10 ⁻⁶ m × 10 ⁻⁶ m × 10 ⁻⁶ m × 10 ³ kN	 ³ /m	VL型	3150 0.60 1890 180.0	VL型	3150 0.60 1890 180.0
抵抗モーメントMsp1 = a×	Z	kN •	m/m		340.20		340.20

e. 照査面より下の受働土圧モーメント(Msp2)の計算

矢板の抵抗モーメントは、照査面より下の受働抵抗モーメントより大きくなり得ないため照査面を 支点とした受働土圧モーメントを求める。

計算に使用する地層条件は、堤外区間で代表させることとする。

アーム長 = 照査面から層上面までの距離 + (h / 3) × (p1 + 2 × p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	0.000 -5.000	5.000	40.00 70.00	275.00	2.727	750.00
2	-5.000 -10.000	5.000	90.00 240.00	825.00	7.879	6500.00
				1100.00		7250.00

2.2.2 壁体の滑動に対する検討

(1)結果要旨

1)照查式

壁体幅B = 8.000、高さH = 8.000(m)について、下式にて照査を行う。

$$\frac{Fr}{Fd} \ge FS$$

ここに、

FS:必要安全率(1.20)

Fd:壁体に作用する水平力の総和(kN/m)

Fr:滑動抵抗力の総和(kN/m)

Fr = Fpp + Fs ここに、

Fpp:受働土圧による水平力

Fs : 照査面直下の地盤の水平せん断抵抗力

 $Fs = c \cdot B + W \cdot tan$

W :壁体内土重量(kN/m)

: 照査面直下の土の内部摩擦角(度) c : 照査面直下の土の粘着力(kN/m²)

2) 照査結果

照査は根入れ先端でのみ行う。

照査箇所名	照 査 面	照査面の	水平力総和	抵抗力総和	安全率
	G.L.(m)	深さd	Fd(kN/m)	Fr(kN/m)	F
根入れ先端	-10.000	10.000	856.47	2016.37	2.35 1.20

(2) 照査面(根入れ先端: G.L.-10.000m)

1) 照査結果

項	目	数	値
水平力の総和	Fd(kN/m)	8	356.47
抵抗力の総和	Fr(kN/m)	20	16.37
安全率 F	r / Fd	2.35	1.20

2)水平力の総和 (Fd) の算定

水平力の内訳		水平力
水圧力 主働土圧力 その他荷重力	Fw Fa Fc	764.80 91.67 0.00
水平力の総和	Fd(kN/m)	856.47

a.水圧力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の水圧モーメント表参照。

b.主働土圧力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の主働土圧モーメント表参照。

c.その他の荷重

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時のその他荷重モーメント表参照。

3) 滑動抵抗力の総和 (Fr) の算定

抵抗力の内訳	水平力
地盤の水平せん断抵抗力 Fs 受働土圧力 Fp	916.37 1100.00
抵抗力の総和 Fr(kN/m)	2016.37

a.地盤の水平せん断抵抗力 (Fs)の算定

 $Fs = c \cdot B + W \cdot tan$

 $= 0.00 \cdot 8.000 + 1587.20 \cdot \tan 30.00 ^{\circ}$

= 916.37(kN/m)

b.壁体内土重量(₩)

重量の計算範囲は、壁体天端から照査面(中詰土含む)までとする。堤体区間の地層データを用いる。

$$W = (ihi + q) \times B$$

= $(198.40 + 0.00) \times 8.000 = 1587.20(kN/m)$

ここに、qは上載荷重。

No	層 上 面 標 高 G.L.(m)	層 下 面 標 高 G.L.(m)	層 厚 hi (m)	土 の 単位重量 (kN/m³)	土 の 有効重量 i・hi (kN/m²)
1 2 3 4 5 6	8.000 6.400 3.200 0.500 0.000 -5.000	6.400 3.200 0.500 0.000 -5.000 -10.000	1.600 3.200 2.700 0.500 5.000 5.000	18.0 18.0 10.0 10.0 6.0 10.0	28.80 57.60 27.00 5.00 30.00 50.00
			18.000		198.40

c.受働土圧力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の受働土圧モーメント表参照。

2.2.3 基礎地盤の支持力に対する検討

(1)結果要旨

1)照查式

壁体幅B= 8.000、高さH= 8.000(m)について、下式にて照査を行う。

$$\frac{Qu}{V - \gamma 2 \cdot Df \cdot Be} \ge FS$$

Qu =Be
$$\{k \cdot c \cdot Nc + k \cdot \gamma \cdot 2 \cdot Df \cdot (Nq-1) + \frac{1}{2} \cdot \gamma \cdot 1 \cdot Be \cdot N\gamma \}$$

ここに、

FS : 必要安全率 (1.20)

Qu : 荷重の偏心傾斜を考慮した地盤の極限支持力(kN/m)

V : 照査面に作用する鉛直成分(照査面より上の壁体内重量)(kN/m)

Be :偏心を考慮した基礎の有効載荷幅(m)

Be = B - 2e

B:堤体幅

e:荷重に偏心距離 (e=Mb/V)

Mb : 照査面に作用するモーメント

k : 根入れ効果に対する割増係数(=1.0とする)

c : 照査面直下の粘着力

Df: 現地盤から照査面までの距離

2: 現地盤から照査面までの区間 (Df) の土の平均単位体積重量。ただし、水以下は水中重量。

1: 照査面直下の支持地盤の土の単位重量。ただし、水以下は水中重量。

Nc,Nq,N : 荷重の偏心を考慮した支持力係数(設計マニュアル図8.10~12)

tan = Hb / V

Hb: 照査面に作用する合力の水平成分

2)照査結果

照査は根入れ先端でのみ行う。

照査箇所名	照 査 面	照査面の	極限支持力	V- 2.Df.Be	安全率
	G.L.(m)	深さd	Qu(kN/m)	(kN/m)	F
根入れ先端	-10.000	10.000	9937.41	1148.41	8.65 1.20

(2) 照査面(根入れ先端: G.L.-10.000m)

1)照査結果

	項目	記号	数 値
鉛直成分	壁体内土重量(上載荷重含む) 現地盤から照査面までの距離 現地盤から照査面までの平均土単位重量 偏心を考慮した基礎の有効載荷幅	V Df 2 Be	1587.20 10.000 8.00 5.485
Л	鉛直成分集計値 V - 2.Df.Be (kN/m)		1148.41
Qu	照査面に作用するモーメント 照査面に作用する合力の水平成分 偏心距離 作用力の傾き(Hb/V) 照査面直下の内部摩擦角 照査面直下の粘着力 照査面直下の土の単位重量	Mb Hb e tan c	1996.02 0.00 1.258 0.000 30.00 0.00 10.00
	支持力係数 支持力係数 支持力係数	Nc Nq N	30.140 18.401 15.304
	地盤の極限支持力 Qu (kN/m)		9937.41
安全率	K		8.65 1.20

2) 照査面での外力の集計

外力の内訳	モーメント Mb(kN.m/m)	水平力 Hb(kN/m)
水圧 Mw(Fw) 主働土圧 Ma(Fa) 受働土圧 - Mp(Fp) その他荷重 Mc(Fc)	5551.57 194.44 3750.00 0.00	764.80 91.67 1100.00 0.00
外力の集計	1996.02	0.00

a.水圧

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の水圧モーメント表参照。

b.主働土圧

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の主働土圧モーメント表参照。

c. 受働土圧

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の受働土圧モーメント表参照。

d.その他荷重

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時のその他荷重モーメント表参照。

3)壁体内土重量(V)

「滑動に対する検討結果」の「滑動抵抗力の総和」中の「b.壁体内土重量」参照。

$$V = 1587.20(kN/m)$$

4)偏心距離 (e)の算定

$$e = Mb / V$$

$$= 1.258(m)$$

$$= 8.000 - 2.0 \times 1.258$$

$$= 5.485(m)$$

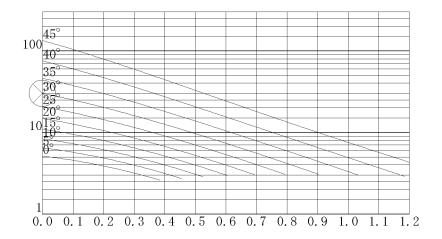
5)作用力の傾きの算定

$$= 0.000$$

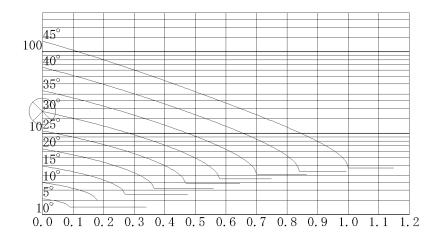
6) 2の算定

現地盤から照査面までの区間 (Df) の土の平均単位体積重量。ただし、水以下は水中重量。 計算の都合上、堤体区間の地層データを用いるものとする。

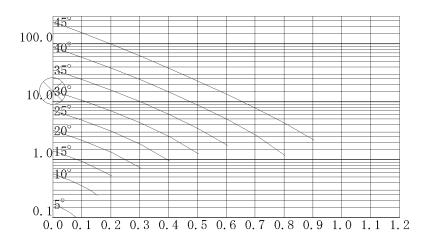
$$\gamma 2 = \frac{\sum \gamma \text{ ihi}}{\sum \text{hi}}$$


$$= 8.00(kN/m^3)$$

No	層 上 面 標 高 G.L.(m)	層 下 面 標 高 G.L.(m)	層 厚 hi (m)	土 の 単位重量 (kN/m³)	土 の 有効重量 i・hi (kN/m²)
1 2	0.000 -5.000	-5.000 -10.000	5.000 5.000	6.0 10.0	30.00 50.00
			10.000		80.00


(3)支持力係数算定図

作用力の傾き (Mb/Hb) tan = 0.000 照査面直下の内部摩擦角 = 30.00 支持力係数 Nc = 30.140 支持力係数 Nq = 18.401 支持力係数 N = 15.304


1)Nc算定図

2)Nq算定図

3)N 算定図

2.3 堤内側矢板

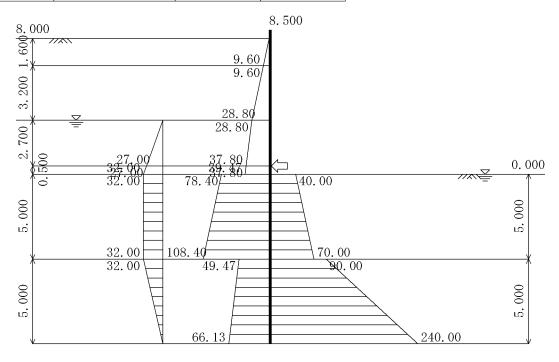
2.3.1 根入れ長の計算

(1)結果要旨

使用鋼材名 : VL型

決定全長 : 18.500(m) 引張材位置 G.L. : 0.500(m) 引張材よる上の外力:無視する 受働側の無効層厚 : 0.000(m) R.W.L : 3.200(m) L.W.L : 0.000(m)

照査は、引張材取付位置回りの主働側(Ma+Mw)と受働側モーメント(Mp)が、下式を満足するように根入れ長を検討する。


$$F_{S} = \frac{Mp}{Ma + Mw + Mc} \ge F_{Sa}$$

ここに、

Fsa:必要安全率(砂質地盤:1.50)

Mp : 受働土圧による引張材位置のモーメント Ma : 主働土圧による引張材位置のモーメント Mw : 水圧による引張材位置のモーメント

Į	頁		目	必要根入れ長	決定根入れ長
根力	へれ を	七端位	∑置 G.L.(m)	-9.590	-10.000
主	働	側	Ma + Mw+Mc(kN.m/m)	4538.88	4872.21
受	働	側	Mp(kN.m/m)	6812.76	7800.00
安	全	率	Mp/(Ma+Mw+Mc)	1.501 1.50	1.601 1.50

(2)外力集計表

1)主働土圧モーメント表

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pa kN/m²	水平力 Pa kN/m	アーム長 y m	モーメント Ma kN.m/m
1	0.500 0.000	0.500	37.80 39.47	19.32	0.252	4.86
2	0.000 -5.000	5.000	78.40 108.40	467.00	3.134	1463.50
3	-5.000 -10.000	5.000	49.47 66.13	289.00	8.120	2346.72
				775.32		3815.09

2)水圧モーメント表

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pw kN/m²	水平力 Pw kN/m	アーム長 y m	モーメント Mw kN.m/m
1	0.500 0.000	0.500	27.00 32.00	14.75	0.257	3.79
2	0.000 -5.000	5.000	32.00 32.00	160.00	3.000	480.00
3	-5.000 -10.000	5.000	32.00 0.00	80.00	7.167	573.33
				254.75		1057.13

3)受働土圧モーメント表

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	0.000 -5.000	5.000	40.00 70.00	275.00	3.227	887.50
2	-5.000 -10.000	5.000	90.00 240.00	825.00	8.379	6912.50
				1100.00		7800.00

4)その他荷重モーメント表

Pc = 0.00kN/mMc = 0.00kN.m/m

2.3.2 壁体断面力の計算

(1)結果要旨

1)解析結果

矢板曲げモーメント、引張材反力は、弾塑性法により算定する。解析結果は以下の通りである。

解析項目		解析結果	発生位置
最大曲げモーメント	Mmax(kN.m/m)	292.19	G.L. 0.500
最大せん断力	Smax(kN/m)	-263.58	G.L. 0.500
上段引張材反力	R1(kN/m)	-21.95	G.L. 7.500
下段引張材反力	R2(kN/m)	-443.66	G.L. 0.500

2)荷重条件

弾塑性解析に用いる有効側圧は、主働土圧 + 水圧、受働土圧から静止土圧分を事前に差く。 なお、粘性土においても土圧と水圧は砂質土と同様に、別々に矢板に作用するものとする。主働土圧、 水圧、受働土圧強度、静止土圧強度は「矢板計算時の土圧・水圧強度表」を参照。 ここでは、弾塑性解析に使用する有効側圧分布表を示す。

	深さ	背面	面側	掘削	间 側	有 効	有 効	
No	深 さ GL(m)	主働土圧 kN/m²	水 kN/m²	受働土圧 kN/m²	静止土圧 kN/m²	主働側圧 kN/m²	受働側圧 kN/m²	
1	8.500 8.000	0.00 0.00	0.00 0.00			0.00 0.00		
2	8.000 6.400	0.00 9.60	0.00 0.00			0.00 9.60		
3	6.400 3.200	9.60 28.80	0.00 0.00			9.60 28.80		
4	3.200 0.500	28.80 37.80	0.00 27.00			28.80 64.80		
5	0.500 0.000	37.80 39.47	27.00 32.00			64.80 71.47		
6	0.000 -5.000	78.40 108.40	32.00 32.00	40.00 70.00	0.00 15.00	110.40 125.40	40.00 55.00	
7	-5.000 -10.000	49.47 66.13	32.00 0.00	90.00 240.00	15.00 40.00	66.47 26.13	75.00 200.00	

は無効層で解析上の土圧強度は0扱いとする。

その他荷重

3)地盤バネ条件

受働バネは次式より求める。

kH=
$$\eta$$
 · $\frac{1}{0.3}$ α Eo · $(\frac{BH}{0.3})^{-3/4}$

ここに、

:壁体形式に関わる係数。連続した壁体につき = 1.0

BH:換算載荷幅(10.0m)

No	上 面標 高 G.L.(m)	下 面 標 高 G.L.(m)	層 厚 h m	变形係数 Eo kN/m²	地盤バネ kH kN/m²
1 2	0.000	-5.000	5.000	42000	10092
	-5.000	-15.000	10.000	42000	10092

は無効層で解析上のバネ強度は0扱いとする。

4) 引張材バネ内部計算一覧

・引張材バネ定数の算式

$$K_{S} = \frac{\alpha \times (2 \times \Delta \times A \times E)}{(L \times S)}$$

ここに、

: 切ばりのゆるみを表す係数[1.0]

L:引張材設置長(堤体幅) [8.000]m

s : 引張材水平間隔 A : 引張材断面積

・計算一覧

引張材番 号	本数 n 本	直 径 mm	断 面 積 A m²	ヤング係数 E kN/m²	水平間隔 s (m)	バネ定数 Ks (kN/m/m)
1 2	1	25	0.000491	210000000.0	2.000	12885
	1	85	0.005675	210000000.0	2.000	148956

は直接バネ値入力。

5)解析用壁体断面諸量

断 面 積	断 面 2 次	ヤング係数
A	モーメント I	E
m²	m ⁴	kN/m²
0.026760	0.00028350	210000000.0

(2)解析結果(収束時の構造荷重条件)

1)状態の説明

・掘削面上

壁体本体区間(中詰土)を指す。背面側から主働側圧を考慮。地盤バネは存在しない。

・受働弾性

根入れ区間で、掘削側への変位が極限変位以内の状態。

背面側からは有効主働側圧載荷を考慮。地盤バネ有り、掘削側荷重無し。

・受働塑性

根入れ区間で、掘削側への変位が極限変位を超えた状態を指す。

背面側からは有効主働側圧載荷を考慮。地盤バネ無し、掘削側荷重有り。

・主働弾性

根入れ区間で、背面側へ変位が生じた状態。解析の仮定には無い状態。便宜上、受働弾性扱い。

2)荷重条件表

格点	Y座標		背	面側荷重強	度	掘	削側荷重強	度	地盤
No No	GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
1	8.500	掘削面上	0.00	0.00	0.00				
2	8.300	掘削面上	0.00	0.00	0.00				
3	8.100	掘削面上	0.00	0.00	0.00				
4	8.000	掘削面上	0.00	0.00	0.01				
5	7.900	掘削面上	0.60	0.60	0.11				
6	7.700	掘削面上	1.80	1.80	0.36				
7	7.500	引 張 材	3.00	3.00	0.60				12885
8	7.300	掘削面上	4.20	4.20	0.84				
9	7.100	掘削面上	5.40	5.40	1.08				
10	6.900	掘削面上	6.60	6.60	1.32				
11	6.700	掘削面上	7.80	7.80	1.56				
12	6.500	掘削面上	9.00	9.00	1.33				
13	6.400	掘削面上	9.60	9.60	0.96				

+42 上	V 広 挿		背	面側荷重強	度	掘	削側荷重強		地 盤
格点 No	Y 座 標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
14	6.300	掘削面上	10.20	10.20	1.55				
15	6.100	掘削面上	11.40	11.40	2.28				
16	5.900	掘削面上	12.60	12.60	2.52				
17	5.700	掘削面上	13.80	13.80	2.76				
18	5.500	掘削面上	15.00	15.00	3.00				
19	5.300	掘削面上	16.20	16.20	3.24				
20	5.100	掘削面上	17.40	17.40	3.48				
21	4.900	掘削面上	18.60	18.60	3.72				
22	4.700	掘削面上	19.80	19.80	3.96				
23	4.500	掘削面上	21.00	21.00	4.20				
24	4.300	掘削面上	22.20	22.20	4.44				
25	4.100	掘削面上	23.40	23.40	4.68				
26	3.900	掘削面上	24.60	24.60	4.92				
27	3.700	掘削面上	25.80	25.80	5.16				
28	3.500	掘削面上	27.00	27.00	5.40				
29	3.300	掘削面上	28.20	28.20	4.21				
30	3.200	掘削面上	28.80	28.80	2.89				
31	3.100	掘削面上	30.13	30.13	4.57				
32	2.900	掘削面上	32.80	32.80	6.56				
33	2.700	掘削面上	35.47	35.47	7.09				
34	2.500	掘削面上	38.13	38.13	7.63				
35	2.300	掘削面上	40.80	40.80	8.16				
36	2.100	掘削面上	43.47	43.47	8.69				
37	1.900	掘削面上	46.13	46.13	9.23				
38	1.700	掘削面上	48.80	48.80	9.76				
39	1.500	掘削面上	51.47	51.47	10.29				
40	1.300	掘削面上	54.13	54.13	10.83				
41	1.100	掘削面上	56.80	56.80	11.36				
42	0.900	掘削面上	59.47	59.47	11.89				
43	0.700	掘削面上	62.13	62.13	12.43				
44	0.500	引張材	64.80	64.80	12.96				148956
45	0.300	掘削面上	67.47	67.47	13.49				
46	0.100	掘削面上	70.13	70.13	10.47				
47	0.000	受働塑性	71.47	110.40	9.08	0.00	40.00	2.00	
48	-0.100	受働塑性	110.70	110.70	16.62	40.30	40.30	6.06	
49	-0.300	受働塑性	111.30	111.30	22.26	40.90	40.90	8.18	
50	-0.500	受働塑性	111.90	111.90	22.38	41.50	41.50	8.30	

松占	V 広 描		背	面側荷重強	 度	掘	削側荷重強	 度	地 盤
格点 No	Y 座 標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
51	-0.700	受働塑性	112.50	112.50	22.50	42.10	42.10	8.42	
52	-0.900	受働塑性	113.10	113.10	22.62	42.70	42.70	8.54	
53	-1.100	受働塑性	113.70	113.70	22.74	43.30	43.30	8.66	
54	-1.300	受働塑性	114.30	114.30	22.86	43.90	43.90	8.78	
55	-1.500	受働塑性	114.90	114.90	22.98	44.50	44.50	8.90	
56	-1.700	受働塑性	115.50	115.50	23.10	45.10	45.10	9.02	
57	-1.900	受働塑性	116.10	116.10	23.22	45.70	45.70	9.14	
58	-2.100	受働塑性	116.70	116.70	23.34	46.30	46.30	9.26	
59	-2.300	受働塑性	117.30	117.30	23.46	46.90	46.90	9.38	
60	-2.500	受働塑性	117.90	117.90	23.58	47.50	47.50	9.50	
61	-2.700	受働塑性	118.50	118.50	23.70	48.10	48.10	9.62	
62	-2.900	受働塑性	119.10	119.10	23.82	48.70	48.70	9.74	
63	-3.100	受働塑性	119.70	119.70	23.94	49.30	49.30	9.86	
64	-3.300	受働塑性	120.30	120.30	24.06	49.90	49.90	9.98	
65	-3.500	受働塑性	120.90	120.90	24.18	50.50	50.50	10.10	
66	-3.700	受働塑性	121.50	121.50	24.30	51.10	51.10	10.22	
67	-3.900	受働塑性	122.10	122.10	24.42	51.70	51.70	10.34	
68	-4.100	受働塑性	122.70	122.70	24.54	52.30	52.30	10.46	
69	-4.300	受働塑性	123.30	123.30	24.66	52.90	52.90	10.58	
70	-4.500	受働塑性	123.90	123.90	24.78	53.50	53.50	10.70	
71	-4.700	受働塑性	124.50	124.50	24.90	54.10	54.10	10.82	
72	-4.900	受働塑性	125.10	125.10	18.75	54.70	54.70	8.19	
73	-5.000	受働塑性	125.40	66.47	9.58	55.00	75.00	6.53	
74	-5.100	受働塑性	65.66	65.66	9.82	77.50	77.50	11.72	
75	-5.300	受働塑性	64.05	64.05	12.81	82.50	82.50	16.50	
76	-5.500	受働塑性	62.43	62.43	12.49	87.50	87.50	17.50	
77	-5.700	受働塑性	60.82	60.82	12.16	92.50	92.50	18.50	
78	-5.900	受働塑性	59.21	59.21	11.84	97.50	97.50	19.50	
79	-6.100	受働塑性	57.59	57.59	11.52	102.50	102.50	20.50	
80	-6.300	受働塑性	55.98	55.98	11.20	107.50	107.50	21.50	
81	-6.500	受働塑性	54.37	54.37	10.87	112.50	112.50	22.50	
82	-6.700	受働塑性	52.75	52.75	10.55	117.50	117.50	23.50	
83	-6.900	受働塑性	51.14	51.14	10.23	122.50	122.50	24.50	
84	-7.100	受働弾性	49.53	49.53	9.91	127.50	127.50		2018
85	-7.300	受働弾性	47.91	47.91	9.58	132.50	132.50		2018
86	-7.500	受働弾性	46.30	46.30	9.26	137.50	137.50		2018
87	-7.700	受働弾性	44.69	44.69	8.94	142.50	142.50		2018

格点	∨ 麻 –	 座標	背	面側荷重強	度	掘	地 盤		
No No	GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
88	-7.900	受働弾性	43.07	43.07	8.61	147.50	147.50		2018
89	-8.100	受働弾性	41.46	41.46	8.29	152.50	152.50		2018
90	-8.300	受働弾性	39.85	39.85	7.97	157.50	157.50		2018
91	-8.500	受働弾性	38.23	38.23	7.65	162.50	162.50		2018
92	-8.700	受働弾性	36.62	36.62	7.32	167.50	167.50		2018
93	-8.900	受働弾性	35.01	35.01	7.00	172.50	172.50		2018
94	-9.100	受働弾性	33.39	33.39	6.68	177.50	177.50		2018
95	-9.300	受働弾性	31.78	31.78	6.36	182.50	182.50		2018
96	-9.500	受働弾性	30.17	30.17	6.03	187.50	187.50		2018
97	-9.700	主働弾性	28.55	28.55	5.71	192.50	192.50		2018
98	-9.900	主働弾性	26.94	26.94	4.07	197.50	197.50		1514
99	-10.000	主働弾性	26.13	0.00	1.32	200.00	0.00		505
					1050.55			437.50	

状態の欄が「引張材」の時、地盤バネ強度は引張材バネ強度である。

(3)解析結果 (バネ値、変位、反力)

最大变位 xmax = 25.78mm (G.L. -3.700m)

格点 No	Y 座 標 GL(m)	状 態	地 盤 バネ強度 kN/m	变 位 x mm	極限変位 xmax mm	地盤反力 Q kN/m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	8.500 8.300 8.300 7.900 7.700 7.500 7.300 7.100 6.900 6.700 6.500 6.400 6.300 6.100 5.900 5.500 5.300 5.100 4.700 4.500 4.700 4.500 4.300 3.700 3.500 3.300 3.100 2.900 2.700 2.500 2.100 1.900	掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘	12885	1.38 1.44 1.51 1.54 1.57 1.64 1.70 1.77 1.83 1.89 1.93 1.99 2.00 2.01 2.00 1.98 1.94 1.88 1.80 1.70 1.59 1.46 1.31 1.15 0.97 0.80 0.61 0.44 0.27 0.11 -0.03 -0.13 -0.20 -0.22 -0.18		

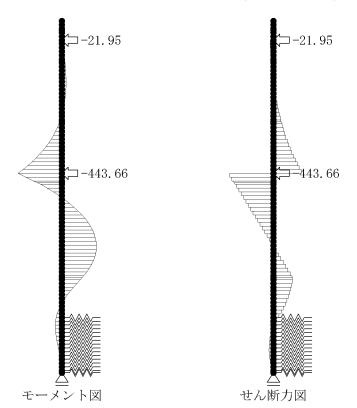
38	格点 No	Y座標 GL(m)	状 態	地 盤 バネ強度 kN/m	变 位 x mm	極限変位 xmax mm	地盤反力 Q kN/m
	39 40 41 42 43 44 45 55 55 55 56 56 66 66 66 67 77 77 77 78 80 81 82 83 84 88 89 91 91 92 93 94 95 97 98 98 98 98 98 98 98 98 98 98 98 98 98	1.500 1.300 1.100 0.900 0.700 0.500 0.300 0.100 0.000 -0.100 -0.500 -0.700 -1.100 -1.300 -1.500 -1.700 -1.900 -2.100 -2.300 -2.500 -2.700 -2.900 -3.100 -3.300 -3.500 -3.700 -3.900 -4.100 -4.300 -4.500 -5.500 -5.500 -5.700 -5.900 -5.100 -7.100 -7.300 -7.500 -7.700 -7.900 -8.100 -7.500 -7.700 -7.900 -8.100 -7.900 -8.100 -9.900 -9.900 -9.900 -9.900	掘掘掘掘掘掘掘受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受		0.14 0.43 0.85 1.40 2.98 4.04 5.27 5.93 6.62 8.07 9.58 11.13 12.70 14.25 15.77 17.23 18.62 21.12 22.19 23.14 23.96 24.55 25.51 25.72 25.45 25.45 22.31 21.38 22.39 23.16 24.55 23.16 22.75 23.16 24.55 23.16 22.75 23.16 24.55 23.16 24.55 25.31 21.38 20.38 19.33 18.62 21.12 22.19 23.14 23.96 24.55 25.45 25.45 25.45 26.45 27.41 21.12 22.19 23.16 22.75 23.16 22.75 22.31 21.38 20.38 19.33 18.62 21.12 22.19 23.16 22.75 22.31 21.38 22.75 22.31 21.38 22.75 22.31 21.38 22.75 22.31 21.38 22.75 22.31 21.38 22.75 22.31 21.38 22.75 22.31 21.38 22.75 22.31 21.38 22.75 22.31 21.38 22.75 22.31 21.38 22.75 22.31 21.38 22.75 23.16 22.75 23.16 23.16 23.16 23.74 23.86 23.86 24.70 25.60 26.70 27.70	4.00 4.05 4.11 4.17 4.29 4.35 4.41 4.53 4.65 4.77 4.83 4.94 5.00 5.12 5.18 5.30 5.12 5.30 6.47 7.74 8.67 9.66 10.165 11.64 12.14 13.13 13.62 14.162 14.162 14.162 14.162 15.61 16.60 17.59 18.08 19.51	

印は引張材反力で、その時の地盤バネ強度は引張材バネ強度である。

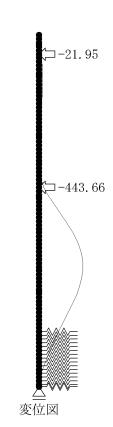
極限変位(xmax=有効受働土圧強度/地盤バネ強度)を超える変位(x)が生じた場合は塑性状態である。

(4)解析結果(断面力)

最大曲げモーメントMmax = 292.19kN.m/m (G.L. 0.500m) 最大せん断力 Smax = -263.58kN/m (G.L. 0.500m) 最大変位 xmax = 25.78mm (G.L. -3.700m)


格点	Y座標	モーメント	- kN.m/m	せん断力	J kN/m	变位	地盤反力
No	GL(m)	上面	下面	上面	下面	mm	kN/m
						Х	Q

格点	Y座標	モーメント	~ kN.m/m	せん断力	J kN/m	变 位 X	地盤反力 Q
No	GL(m)	上面	下面	上面	下面	mm	kN/m
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	-5.500 -5.700 -5.900 -6.100 -6.300 -6.500 -6.700 -6.900 -7.100 -7.300 -7.500 -7.700 -8.100 -8.300 -8.500 -8.900 -9.100 -9.300	-78.59 -57.62 -37.91 -19.74 -3.36 10.96 22.95 32.95 38.39 42.77 44.32 43.92 41.89 38.57 34.29 29.33 24.01 18.61 13.41 8.70 4.75	-78.59 -57.62 -37.91 -19.74 -3.36 10.96 22.95 32.95 38.90 42.77 44.32 43.92 41.89 38.57 34.29 29.33 24.01 18.61 13.41 8.70 4.75	109.88 104.86 98.53 90.87 81.89 71.58 59.96 47.01 32.74 19.35 7.78 -2.03 -10.13 -16.58 -21.45 -24.78 -26.62 -27.09 -25.97 -23.55 -19.75	104.86 98.53 90.87 81.89 71.58 59.96 47.01 32.74 19.35 7.78 -2.03 -10.13 -16.58 -21.45 -24.78 -26.62 -27.00 -25.97 -23.55 -19.75 -14.59	20.38 19.33 18.24 17.13 16.00 14.86 13.74 12.63 11.54 10.48 9.45 8.44 7.47 6.52 5.60 4.70 3.82 2.96 2.11 1.27 0.43	-23.30 -21.15 -19.06 -17.04 -15.07 -13.16 -11.30 -9.49 -7.71 -5.97 -4.26 -2.56 -0.87
97 98 99	-9.700 -9.900 -10.000	1.83 0.21 0.00	1.83 0.21	-14.59 -8.08 -2.15	-8.08 -2.15	-0.40 -1.23 -1.64	0.81 1.86 0.83


印は引張材反力である。

(5)断面力図

最大曲げモーメントMmax = 292.19kN.m/m (G.L. 0.500m) 最大せん断力 Smax = -263.58kN/m (G.L. 0.500m) 最大変位 xmax = 25.78mm (G.L. -3.700m)

図中、矢印の数値は引張材反力(kN/m)である。

2.3.3 壁体応力度

(1)使用断面

断面種類:鋼矢板 使用鋼材:VL型 使用材質:SY295

断面諸	元	単 位	数	値
断面係数 同上 有効率	Z	$\times 10^3 (\text{mm}^3/\text{m})$		3150 0.600
断面積	Α	× 10 ² (mm ² /m)		267.60

(2)設計断面力

設計断面力は下表の通りとする。

状	態	モーメント M ×10°(N.mm/m)	軸 × 10³(カ N/m)	せん断力 S ×10³(N/m)
Max	時	292.19		0.00	263.58

(3)曲げ応力度

$$\sigma = \frac{M}{\alpha \cdot Z} + \frac{N}{A} \leq \sigma \operatorname{sa}$$

状 態	応力度 N/mm²	許容応力度 sa N/mm²	判	定
Max時	155	180		

(4)せん断応力度

$$au = \frac{S}{A} \leq au a$$

状	態	応力度 N/mm²	許容応力度 a N/mm²	判	定
Max	時	10	83		

2.3.4 引張材応力度

(1)上段引張材の検討

1)使用断面

使用径 : 25(mm) 使用材質 : 高張力鋼690 許容応力度 : 176(N/mm²) 引張材設置間隔L : 2.000(m) 引張材使用本数n : 1(本)

引張材断面積 A: 25²×(/4)(mm²)

2)張力の算定

 $P = R \times L$

引張材反力 R kN/m	引張材設置 間隔 L	引張材張力 P kN/本
21.95	2.000	43.90

3)応力度

$$\sigma = \frac{P \times 10^3}{n \times A} \le \sigma \, a$$

応力度 N/mm²	許容応力度 sa N/mm²	判	定
89	176		

(2)下段引張材の検討

1)使用断面

使用径 : 85(mm) 使用材質 : 高張力鋼690 許容応力度 : 176(N/mm²) 引張材設置間隔L : 2.000(m) 引張材使用本数n : 1(本)

引張材断面積 A: 85²×(/4)(mm²)

2)張力の算定

 $P = R \times L$

引張材反力	引張材設置	引張材張力
R	間隔 L	P
kN/m	m	kN/本
443.66	2.000	887.33

3)応力度

$$\sigma = \frac{P \times 10^3}{n \times A} \leqq \sigma$$
 a

応力度 N/mm²	許容応力度 sa N/mm²	判	定
156	176		

2.3.5 腹起し材応力度

(1)上段腹起し材の検討

1)使用断面

使用鋼材 : [125×65×6×8

使用材質 : SS400

許容応力度: 140(N/mm²) 設置間隔: 2.000(m)

2)モーメントの算定

$$M = \frac{P \times L}{10}$$

引張材張力	引張材設置	モーメント
P	間隔 L	M
kN/本	m	kN.m/m
43.90	2.000	

3)応力度

$$\sigma = \frac{M \times 10^8}{Z \times 10^3} \le \sigma \, a$$

Z:断面係数(= 67×2cm³)

2枚で1組扱いとし、登録鋼材の断面係数を2倍扱いとする。

応力度	許容応力度 sa	半川	定
N/mm²	N/mm²	73	~_
66	140		

(2)下段腹起し材の検討

1)使用断面

使用鋼材 : [380×100×10.5×16

使用材質 : SS400

許容応力度: 140(N/mm²) 設置間隔: 2.000(m)

2)モーメントの算定

$$M = \frac{P \times L}{10}$$

引張材張力 P kN/本	引張材設置 間隔 L	モーメント M kN.m/m	
887.33	2.000	177.47	

3)応力度

$$\sigma = \frac{M \times 10^8}{Z \times 10^3} \le \sigma \, a$$

Z:断面係数(= 763×2cm³)

2枚で1組扱いとし、登録鋼材の断面係数を2倍扱いとする。

応力度 N/mm²	許容応力度 sa N/mm²	判	定
116	140		

2.3.6 4C> hの検討

(1)照査方法

内部摩擦角が0の一様な粘性土地盤の場合には、次式を満足しなければ根入れ長の照査(極限平衡法)を満たし得ないので、別途地盤改良などの対策が必要となる。ここでは、堤体区間の現地盤面で照査する。

4c> ihi ここに、

c : 現地盤面直下の地盤の粘着力(kN/m²)

i:引張材取り付け点から下の中詰土の各層の単位体積重量(kN/m³)

hi : 引張材取り付け点から下の中詰土の各層の層厚(m)

(2)計算結果一覧

照査面 : G.L. 0.000 (m) 照査面直下の粘着力: c = 20.0 (kN/m²)

残留水位 G.L.(m)	4 • c kN/m²	$h + q$ kN/m^2	判定
3.200	80.00	5.00	

(3) ihi

集計範囲は、引張材位置から現地盤面までとする。

No	層 上 面 標 高 G.L.(m)	層 下 面 標 高 G.L.(m)	層 厚 hi (m)	土 の 単位重量 (kN/m³)	土 の 有効重量 i・hi (kN/m²)
1	0.500	0.000	0.500	10.0	5.00
			0.500		5.00

2.4 堤外側矢板

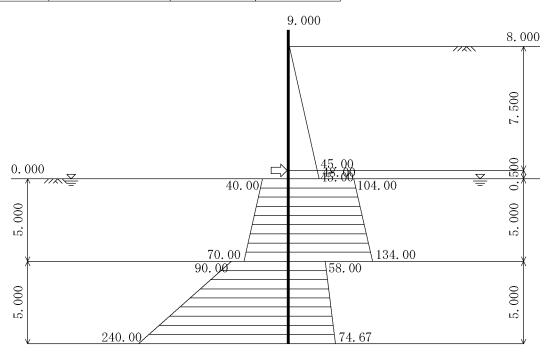
2.4.1 根入れ長の計算

(1)結果要旨

使用鋼材名 : VL型

決定全長 : 19.000(m) 引張材位置 G.L. : 0.500(m) 引張材よる上の外力:無視する 受働側の無効層厚 : 0.000(m) R.W.L : 0.000(m) L.W.L : 0.000(m)

照査は、引張材取付位置回りの主働側(Ma+Mw)と受働側モーメント(Mp)が、下式を満足するように根入れ長を検討する。


$$F_S = \frac{Mp}{Ma + Mw + Mc} \ge F_{SA}$$

ここに、

Fsa:必要安全率(砂質地盤:1.50)

Mp : 受働土圧による引張材位置のモーメント Ma : 主働土圧による引張材位置のモーメント Mw : 水圧による引張材位置のモーメント

Į	頁		目	必要根入れ長	決定根入れ長
根入れ先端位置 G.L.(m)				-9.170	-10.000
主	働	側	Ma + Mw+Mc(kN.m/m)	3927.85	4541.43
受	働	側	Mp(kN.m/m)	5893.85	7800.00
安	全	率	Mp/(Ma+Mw+Mc)	1.501 1.50	1.718 1.50

(2)外力集計表

1)主働土圧モーメント表

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pa kN/m²	水平力 Pa kN/m	アーム長 y m	モーメント Ma kN.m/m
1	0.500 0.000	0.500	45.00 48.00	23.25	0.253	5.88
2	0.000 -5.000	5.000	104.00 134.00	595.00	3.105	1847.50
3	-5.000 -10.000	5.000	58.00 74.67	331.67	8.105	2688.06
				949.92		4541.43

2)水圧モーメント表

 $Pw = 0.00kN/m \qquad Mw = 0.00kN.m/m$

3)受働土圧モーメント表

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	0.000 -5.000	5.000	40.00 70.00	275.00	3.227	887.50
2	-5.000 -10.000	5.000	90.00 240.00	825.00	8.379	6912.50
				1100.00		7800.00

4)その他荷重モーメント表

Pc = 0.00kN/m

Mc = 0.00kN.m/m

2.4.2 壁体断面力の計算

(1)結果要旨

1)解析結果

矢板曲げモーメント、引張材反力は、弾塑性法により算定する。解析結果は以下の通りである。

解析項目		解析結果	発生位置
最大曲げモーメント	Mmax(kN.m/m)	-247.23	G.L. 0.500
最大せん断力	Smax(kN/m)	225.99	G.L. 0.500
上段引張材反力	R1(kN/m)	24.94	G.L. 7.500
下段引張材反力	R2(kN/m)	372.06	G.L. 0.500

ここでは、弾塑性解析に使用する有効側圧分布表を示す。

2)荷重条件

弾塑性解析に用いる有効側圧は、主働土圧 + 水圧、受働土圧から静止土圧分を事前に差く。 なお、粘性土においても土圧と水圧は砂質土と同様に、別々に矢板に作用するものとする。主働土圧、 水圧、受働土圧強度、静止土圧強度は「矢板計算時の土圧・水圧強度表」を参照。

	深さ	背面	可側	i 側 掘削 側		有 効	有数数
No	GL(m)	主働土圧 kN/m²	水 kN/m²	受働土圧 kN/m²	静止土圧 kN/m²	主働側圧 kN/m²	受働側圧 kN/m²
1	9.000 8.000	0.00 0.00	0.00 0.00			0.00 0.00	
2	8.000 0.500	0.00 45.00	0.00 0.00			0.00 45.00	
3	0.500 0.000	45.00 48.00	0.00 0.00			45.00 48.00	
4	0.000 -5.000	104.00 134.00	0.00 0.00	40.00 70.00	0.00 15.00	104.00 119.00	40.00 55.00
5	-5.000 -10.000	58.00 74.67	0.00 0.00	90.00 240.00	15.00 40.00	43.00 34.67	75.00 200.00

は無効層で解析上の土圧強度は0扱いとする。

その他荷重

3)地盤バネ条件

受働バネは次式より求める。

kH=
$$\eta$$
 · $\frac{1}{0.3}$ α Eo · $(\frac{BH}{0.3})^{-3/4}$

ここに、

:壁体形式に関わる係数。連続した壁体につき = 1.0

BH:換算載荷幅(10.0m)

No	上 面	下 面	層 厚	变形係数	地盤バネ
	標 高	標 高	h	Eo	kH
	G.L.(m)	G.L.(m)	m	kN/m²	kN/m²
1 2	0.000	-5.000	5.000	42000	10092
	-5.000	-15.000	10.000	42000	10092

は無効層で解析上のバネ強度は0扱いとする。

4) 引張材バネ内部計算一覧

・引張材バネ定数の算式

$$K_S = \frac{\alpha \times (2 \times \Delta \times A \times E)}{(L \times s)}$$

ここに、

: 切ばりのゆるみを表す係数[1.0]

L:引張材設置長(堤体幅) [8.000]m

s : 引張材水平間隔 A : 引張材断面積

・計算一覧

引張材 番 号	本数 n 本	直 径 mm	断 面 積 A m²	ヤング係数 E kN/m²	水平間隔 s (m)	バネ定数 Ks (kN/m/m)
1 2	1	25 85	0.000491 0.005675	210000000.0 210000000.0	2.000 2.000	12885 148956

は直接バネ値入力。

5)解析用壁体断面諸量

断 面 積 A m²	断 面 2 次 モーメント I	ヤング係数 E kN/m²
0.026760	0.00028350	210000000.0

(2)解析結果(収束時の構造荷重条件)

1)状態の説明

・掘削面上

壁体本体区間(中詰土)を指す。背面側から主働側圧を考慮。地盤バネは存在しない。

· 受働弾性

根入れ区間で、掘削側への変位が極限変位以内の状態。

背面側からは有効主働側圧載荷を考慮。地盤バネ有り、掘削側荷重無し。

・受働塑性

根入れ区間で、掘削側への変位が極限変位を超えた状態を指す。

背面側からは有効主動側圧載荷を考慮。地盤バネ無し、掘削側荷重有り。

主働弾性

根入れ区間で、背面側へ変位が生じた状態。解析の仮定には無い状態。便宜上、受働弾性扱い。

2)荷重条件表

+々上	V 広 挿		背	面側荷重強	度	掘	削側荷重強	度	地 盤
格点 No	Y 座 標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
1	9.000	掘削面上	0.00	0.00	0.00				
2	8.800	掘削面上	0.00	0.00	0.00				
3	8.600	掘削面上	0.00	0.00	0.00				
4	8.400	掘削面上	0.00	0.00	0.00				
5	8.200	掘削面上	0.00	0.00	0.00				
6	8.000	掘削面上	0.00	0.00	0.03				
7	7.800	掘削面上	1.20	1.20	0.24				
8	7.600	掘削面上	2.40	2.40	0.34				
9	7.500	引 張 材	3.00	3.00	0.30				12885
10	7.400	掘削面上	3.60	3.60	0.56				
11	7.200	掘削面上	4.80	4.80	0.96				
12	7.000	掘削面上	6.00	6.00	1.20				
13	6.800	掘削面上	7.20	7.20	1.44				
14	6.600	掘削面上	8.40	8.40	1.68				
15	6.400	掘削面上	9.60	9.60	1.92				
16	6.200	掘削面上	10.80	10.80	2.16				

+4 上	V 広 挿		背	面側荷重強	度	掘	削側荷重強		地 盤
格点 No	Y 座 標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
17	6.000	掘削面上	12.00	12.00	2.40				
18	5.800	掘削面上	13.20	13.20	2.64				
19	5.600	掘削面上	14.40	14.40	2.88				
20	5.400	掘削面上	15.60	15.60	3.12				
21	5.200	掘削面上	16.80	16.80	3.36				
22	5.000	掘削面上	18.00	18.00	3.60				
23	4.800	掘削面上	19.20	19.20	3.84				
24	4.600	掘削面上	20.40	20.40	4.08				
25	4.400	掘削面上	21.60	21.60	4.32				
26	4.200	掘削面上	22.80	22.80	4.56				
27	4.000	掘削面上	24.00	24.00	4.80				
28	3.800	掘削面上	25.20	25.20	5.04				
29	3.600	掘削面上	26.40	26.40	5.28				
30	3.400	掘削面上	27.60	27.60	5.52				
31	3.200	掘削面上	28.80	28.80	5.76				
32	3.000	掘削面上	30.00	30.00	6.00				
33	2.800	掘削面上	31.20	31.20	6.24				
34	2.600	掘削面上	32.40	32.40	6.48				
35	2.400	掘削面上	33.60	33.60	6.72				
36	2.200	掘削面上	34.80	34.80	6.96				
37	2.000	掘削面上	36.00	36.00	7.20				
38	1.800	掘削面上	37.20	37.20	7.44				
39	1.600	掘削面上	38.40	38.40	7.68				
40	1.400	掘削面上	39.60	39.60	7.92				
41	1.200	掘削面上	40.80	40.80	8.16				
42	1.000	掘削面上	42.00	42.00	8.40				
43	0.800	掘削面上	43.20	43.20	8.64				
44	0.600	掘削面上	44.40	44.40	6.64				
45	0.500	引張材	45.00	45.00	4.50				148956
46	0.400	掘削面上	45.60	45.60	6.86				
47	0.200	掘削面上	46.80	46.80	9.36				
48	0.000	受働塑性	48.00	104.00	15.19	0.00	40.00	4.02	
49	-0.200	受働塑性	104.60	104.60	20.92	40.60	40.60	8.12	
50	-0.400	受働塑性	105.20	105.20	21.04	41.20	41.20	8.24	
51	-0.600	受働塑性	105.80	105.80	21.16	41.80	41.80	8.36	
52	-0.800	受働塑性	106.40	106.40	21.28	42.40	42.40	8.48	
53	-1.000	受働塑性	107.00	107.00	21.40	43.00	43.00	8.60	

+4 上	V 広 挿		背	面側荷重強		掘	削側荷重強	度	地 盤
格点 No	Y 座 標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
54	-1.200	受働塑性	107.60	107.60	21.52	43.60	43.60	8.72	
55	-1.400	受働塑性	108.20	108.20	21.64	44.20	44.20	8.84	
56	-1.600	受働塑性	108.80	108.80	21.76	44.80	44.80	8.96	
57	-1.800	受働塑性	109.40	109.40	21.88	45.40	45.40	9.08	
58	-2.000	受働塑性	110.00	110.00	22.00	46.00	46.00	9.20	
59	-2.200	受働塑性	110.60	110.60	22.12	46.60	46.60	9.32	
60	-2.400	受働塑性	111.20	111.20	22.24	47.20	47.20	9.44	
61	-2.600	受働塑性	111.80	111.80	22.36	47.80	47.80	9.56	
62	-2.800	受働塑性	112.40	112.40	22.48	48.40	48.40	9.68	
63	-3.000	受働塑性	113.00	113.00	22.60	49.00	49.00	9.80	
64	-3.200	受働塑性	113.60	113.60	22.72	49.60	49.60	9.92	
65	-3.400	受働塑性	114.20	114.20	22.84	50.20	50.20	10.04	
66	-3.600	受働塑性	114.80	114.80	22.96	50.80	50.80	10.16	
67	-3.800	受働塑性	115.40	115.40	23.08	51.40	51.40	10.28	
68	-4.000	受働塑性	116.00	116.00	23.20	52.00	52.00	10.40	
69	-4.200	受働塑性	116.60	116.60	23.32	52.60	52.60	10.52	
70	-4.400	受働塑性	117.20	117.20	23.44	53.20	53.20	10.64	
71	-4.600	受働塑性	117.80	117.80	23.56	53.80	53.80	10.76	
72	-4.800	受働塑性	118.40	118.40	23.68	54.40	54.40	10.88	
73	-5.000	受働塑性	119.00	43.00	16.18	55.00	75.00	13.11	
74	-5.200	受働塑性	42.67	42.67	8.53	80.00	80.00	16.00	
75	-5.400	受働塑性	42.33	42.33	8.47	85.00	85.00	17.00	
76	-5.600	受働塑性	42.00	42.00	8.40	90.00	90.00	18.00	
77	-5.800	受働塑性	41.67	41.67	8.33	95.00	95.00	19.00	
78	-6.000	受働塑性	41.33	41.33	8.27	100.00	100.00	20.00	
79	-6.200	受働塑性	41.00	41.00	8.20	105.00	105.00	21.00	
80	-6.400	受働塑性	40.67	40.67	8.13	110.00	110.00	22.00	
81	-6.600	受働弾性	40.33	40.33	8.07	115.00	115.00		2018
82	-6.800	受働弾性	40.00	40.00	8.00	120.00	120.00		2018
83	-7.000	受働弾性	39.67	39.67	7.93	125.00	125.00		2018
84	-7.200	受働弾性	39.33	39.33	7.87	130.00	130.00		2018
85	-7.400	受働弾性	39.00	39.00	7.80	135.00	135.00		2018
86	-7.600	受働弾性	38.67	38.67	7.73	140.00	140.00		2018
87	-7.800	受働弾性	38.33	38.33	7.67	145.00	145.00		2018
88	-8.000	受働弾性	38.00	38.00	7.60	150.00	150.00		2018
89	-8.200	受働弾性	37.67	37.67	7.53	155.00	155.00		2018
90	-8.400	受働弾性	37.33	37.33	7.47	160.00	160.00		2018

格点	Y座標		背	面側荷重強	度	掘	削側荷重強	度	地 盤 バネ強度
No No	TAYE 1宗 GL(m)		格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
91	-8.600	受働弾性	37.00	37.00	7.40	165.00	165.00		2018
92	-8.800	受働弾性	36.67	36.67	7.33	170.00	170.00		2018
93	-9.000	受働弾性	36.33	36.33	7.27	175.00	175.00		2018
94	-9.200	受働弾性	36.00	36.00	7.20	180.00	180.00		2018
95	-9.400	受働弾性	35.67	35.67	7.13	185.00	185.00		2018
96	-9.600	受働弾性	35.33	35.33	7.07	190.00	190.00		2018
97	-9.800	受働弾性	35.00	35.00	7.00	195.00	195.00		2018
98	-10.000	受働弾性	34.67	0.00	3.48	200.00	0.00		1009
					943.67			378.13	

状態の欄が「引張材」の時、地盤バネ強度は引張材バネ強度である。

(3)解析結果(バネ値、変位、反力)

最大変位 xmax = -19.73mm (G.L. -3.600m)

最大変位	xmax =	- 19.73	nm (G.L.	3.600m)	
	座 標 L(m) 状	態パ	烈 盤 ズネ強度 kN/m	变 位 x mm	極限変位 xmax mm	地盤反力 Q kN/m
2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.8000	随面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面面		-0.96 -1.09 -1.22 -1.35 -1.48 -1.61 -1.74 -1.87 -1.94 -2.00 -2.13 -2.25 -2.37 -2.48 -2.57 -2.76 -2.76 -2.73 -2.65 -2.71 -2.75 -2.76 -2.73 -1.73 -1.53 -1.33 -1.14 -0.95 -0.45 -0.47 -0.52 -0.43 -0.47 -0.59 -1.13 -1.57 -2.50		24.94

格点 No	Y 座 標 GL(m)	状 態	地 盤 バネ強度 kN/m	变 位 x mm	極限変位 xmax mm	地盤反力 Q kN/m
46 47 48 49 50 51 52 53 54 55 66 67 68 69 70 71 72 73 74 75 77 78 80 81 82 83 84 88 89 90 91 92 93 94 95 96 97 98	0.400 0.200 0.000 -0.200 -0.400 -0.600 -0.800 -1.200 -1.400 -1.600 -1.800 -2.200 -2.400 -2.600 -2.400 -3.600 -3.200 -3.400 -3.600 -3.5.000 -4.400 -4.600 -4.800 -5.200 -5.400 -5.600 -5.800 -6.600 -6.800 -7.200 -7.400 -7.600 -7.800 -7.800 -8.800 -8.800 -9.200 -9.400 -9.400 -9.800 -10.000	掘掘受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受		-2.89 -3.77 -4.78 -5.88 -7.05 -8.26 -9.49 -10.71 -11.92 -13.08 -14.18 -15.22 -16.17 -17.77 -18.40 -18.92 -19.31 -19.57 -19.71 -19.73 -19.61 -19.38 -19.04 -17.41 -16.71 -15.95 -15.15 -14.31 -13.46 -12.61 -11.76 -10.93 -10.11 -9.33 -8.57 -7.84 -7.84 -7.84 -7.84 -5.84 -5.84 -5.24 -4.66 -4.10 -3.55 -3.03 -2.52 -2.01 -1.52 -1.52 -0.53 -0.04	3.98 4.02 4.08 4.14 4.20 4.32 4.38 4.44 4.56 4.62 4.68 4.74 4.80 4.86 4.91 4.97 5.03 5.03 5.15 5.27 5.33 5.39 6.50 7.93 8.42 8.92 9.91 10.40 11.89 12.88 13.87 14.87 14.86 15.85 16.85 17.84 18.33 18.83 19.69	

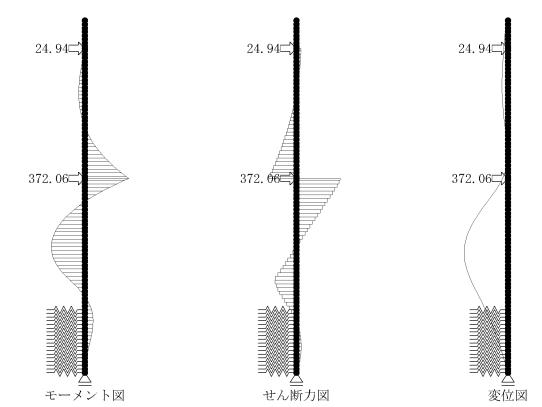
印は引張材反力で、その時の地盤バネ強度は引張材バネ強度である。

極限変位(xmax=有効受働土圧強度/地盤バネ強度)を超える変位(x)が生じた場合は塑性状態である。

(4)解析結果(断面力)

最大曲げモーメントMmax = -247.23kN.m/m (G.L. 0.500m) 最大せん断力 Smax = 225.99kN/m (G.L. 0.500m) 最大変位 xmax = -19.73mm (G.L. -3.600m)

格点		Y座標	モーメント kN.m/m		せん断力	J kN/m	变 位	地盤反力
	No	GL(m)	上面	下面	上面	下面	X mm	kN/m
	1 2 3	9.000 8.800 8.600	0.00	0.00 0.00 0.00	0.00	0.00 0.00 0.00	-0.96 -1.09 -1.22	


格点	Y座標	モーメント	~ kN.m/m	せん断力	J kN/m	变 位	地盤反力
No	GL(m)	上面	下面	上面	下面	X mm	Q kN/m
4	8.400	0.00	0.00	0.00	0.00	-1.35	
5 6	8.200 8.000	0.00 0.00	0.00 0.00	0.00 0.00	0.00 -0.03	-1.48 -1.61	
7	7.800	-0.01	-0.01	-0.03	-0.27	-1.74	
8	7.600	-0.06	-0.06	-0.27	-0.61	-1.87	
9 10	7.500 7.400	-0.12 2.28	-0.12 2.28	-0.61 24.03	24.03 23.47	-1.94 -2.00	24.94
11	7.200	6.98	6.98	23.47	22.51	-2.13	
12 13	7.000 6.800	11.48 15.74	11.48 15.74	22.51 21.31	21.31 19.87	-2.25 -2.37	
14	6.600	19.71	19.71	19.87	18.19	-2.48	
15	6.400	23.35	23.35	18.19	16.27	-2.57	
16 17	6.200 6.000	26.61 29.43	26.61 29.43	16.27 14.11	14.11 11.71	-2.65 -2.71	
18	5.800	31.77	31.77	11.71	9.07	-2.75	
19 20	5.600 5.400	33.58 34.82	33.58 34.82	9.07 6.19	6.19 3.07	-2.76 -2.76	
21	5.200	35.43	35.43	3.07	-0.29	-2.73	
22	5.000	35.38	35.38	-0.29	-3.89	-2.68	
23 24	4.800 4.600	34.60 33.05	34.60 33.05	-3.89 -7.73	-7.73 -11.81	-2.61 -2.51	
25	4.400	30.69	30.69	-11.81	-16.13	-2.39	
26	4.200	27.46	27.46	-16.13	-20.69	-2.25	-
27 28	4.000 3.800	23.33 18.23	23.33 18.23	-20.69 -25.49	-25.49 -30.53	-2.09 -1.91	
29	3.600	12.12	12.12	-30.53	-35.81	-1.73	
30 31	3.400 3.200	4.96 -3.31	4.96 -3.31	-35.81 -41.33	-41.33 -47.09	-1.53 -1.33	
32	3.200	-3.31 -12.73	-3.31 -12.73	-41.33 -47.09	-47.09 -53.09	-1.33	
33	2.800	-23.34	-23.34	-53.09	-59.33	-0.95	
34 35	2.600 2.400	-35.21 -48.37	-35.21 -48.37	-59.33 -65.81	-65.81 -72.53	-0.78 -0.63	
36	2.200	-62.88	-62.88	-72.53	-79.49	-0.52	
37	2.000	-78.78	-78.78	-79.49 -86.69	-86.69	-0.45	-
38 39	1.800 1.600	-96.11 -114.94	-96.11 -114.94	-86.69 -94.13	-94.13 -101.81	-0.43 -0.47	
40	1.400	-135.30	-135.30	-101.81	-109.73	-0.59	
41 42	1.200 1.000	-157.25 -180.83	-157.25 -180.83	-109.73 -117.89	-117.89 -126.29	-0.81 -1.13	
43	0.800	-206.09	-206.09	-126.29	-134.93	-1.13	
44	0.600	-233.07	-233.07	-134.93	-141.57	-2.15	070.00
45 46	0.500 0.400	-247.23 -224.63	-247.23 -224.63	-141.57 225.99	225.99 219.13	-2.50 -2.89	372.06
47	0.200	-180.80	-180.80	219.13	209.77	-3.77	
48 49	0.000 -0.200	-138.85 -99.13	-138.85 -99.13	209.77 198.60	198.60 185.80	-4.78 -5.88	
50	-0.400	-61.97	-61.97	185.80	173.00	-7.05	
51	-0.600	-27.37	-27.37	173.00	160.20	-8.26	
52 53	-0.800 -1.000	4.67 34.15	4.67 34.15	160.20 147.40	147.40 134.60	-9.49 -10.71	
54	-1.200	61.07	61.07	134.60	121.80	-11.92	
55 56	-1.400 -1.600	85.43 107.23	85.43 107.23	121.80 109.00	109.00 96.20	-13.08 -14.18	
57	-1.800	126.47	126.47	96.20	83.40	-15.22	
58	-2.000	143.15	143.15	83.40	70.60	-16.17	
59 60	-2.200 -2.400	157.26 168.82	157.26 168.82	70.60 57.80	57.80 45.00	-17.02 -17.77	
61	-2.600	177.82	177.82	45.00	32.20	-18.40	
62	-2.800	184.26 188.14	184.26 188.14	32.20 19.40	19.40	-18.92 -19.31	
63 64	-3.000 -3.200	189.46	189.46	6.60	6.60 -6.20	-19.57	
65	-3.400	188.22	188.22	-6.20	-19.00	-19.71	
66 67	-3.600 -3.800	184.42 178.06	184.42 178.06	-19.00 -31.80	-31.80 -44.60	-19.73 -19.61	
68	-4.000	169.14	169.14	-44.60	-57.40	-19.38	
69	-4.200	157.66	157.66	-57.40	-70.20	-19.04	
70 71	-4.400 -4.600	143.62 127.02	143.62 127.02	-70.20 -83.00	-83.00 -95.80	-18.59 -18.04	
72	-4.800	107.86	107.86	-95.80	-108.60	-17.41	
73 74	-5.000 -5.200	86.14 63.81	86.14 63.81	-108.60 -111.67	-111.67 -104.20	-16.71 -15.95	
74 75	-5.200 -5.400	42.96	42.96	-111.67	-104.20 -95.67	-15.95	
76	-5.600	23.83	23.83	-95.67	-86.07	-14.31	
77 78	-5.800 -6.000	6.62 -8.46	6.62 -8.46	-86.07 -75.40	-75.40 -63.67	-13.46 -12.61	
, 0	0.000	0.70	0.40	70.40	05.07	12.01	

格点	Y座標	モーメント	- kN.m/m	せん断力	J kN/m	变 位 x	地盤反力 0
No	GL(m)	上面	下面	上面	下面	mm	kN/m
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	-6.200 -6.400 -6.600 -6.800 -7.200 -7.400 -7.600 -7.800 -8.200 -8.400 -8.800 -9.200 -9.200	-21.20 -31.37 -38.77 -43.70 -46.47 -47.36 -46.66 -44.64 -41.55 -37.63 -33.12 -28.24 -23.20 -18.20 -13.44	-21.20 -31.37 -38.77 -43.70 -46.47.36 -46.66 -41.55 -37.63 -33.12 -28.24 -23.20 -18.20 -13.44	-63.67 -50.87 -37.00 -24.65 -13.83 -4.47 3.49 10.11 15.45 19.58 22.55 24.42 25.22 24.99 23.77 21.59 18.45	-50.87 -37.00 -24.65 -13.83 -4.47 30.41 15.45 19.58 22.55 24.42 25.22 24.99 23.77 21.59 18.45 14.37	-11.76 -10.93 -10.11 -9.33 -8.57 -7.84 -7.14 -6.48 -5.84 -5.24 -4.66 -4.10 -3.55 -3.03 -2.52 -2.01 -1.52	20.42 18.82 17.29 15.82 14.42 13.08 11.80 10.57 9.40 8.27 7.17 6.11 5.08 4.06 3.06
96 97	-9.600 -9.800	-2.56 -0.69	-2.56 -0.69	14.37 9.37	9.37 3.44	-1.02 -0.53	2.06 1.07
98	-10.000	0.00		3.44		-0.04	0.04

印は引張材反力である。

(5)断面力図

最大曲げモーメントMmax = -247.23kN.m/m (G.L. 0.500m) 最大せん断力 Smax = 225.99kN/m (G.L. 0.500m) 最大変位 xmax = -19.73mm (G.L. -3.600m)

図中、矢印の数値は引張材反力(kN/m)である。

2.4.3 壁体応力度

(1)使用断面

断面種類:鋼矢板 使用鋼材:VL型 使用材質:SY295

断面諸	元	単 位	数	値
断面係数	Z	× 10 ³ (mm ³ /m)		3150
同上 有効率 断面積	Α	$\times 10^2 (\text{mm}^2/\text{m})$		0.600 267.60

(2)設計断面力

設計断面力は下表の通りとする。

状	態	モーメント M ×10°(N.mm/m)	軸 N ×10³(N/	力 'm)	せん断力 S ×10³(N/m)
Max	時	247.23		0.00	225.99

(3)曲げ応力度

$$\sigma = \frac{M}{\alpha \cdot Z} + \frac{N}{A} \leq \sigma \operatorname{sa}$$

状	態	応力度 N/mm²	許容応力度 sa N/mm²	判	定
Max時		131	180		

(4)せん断応力度

$$au = \frac{S}{A} \leq au a$$

状	態	応力度 N/mm²	許容応力度 a N/mm²	判	定
Max時		8	83		

2.4.4 引張材応力度

(1)上段引張材の検討

1)使用断面

使用径 : 25(mm) 使用材質 : 高張力鋼690 許容応力度 : 176(N/mm²) 引張材設置間隔L : 2.000(m) 引張材使用本数n : 1(本)

引張材断面積 A: 25²×(/4)(mm²)

2)張力の算定

 $P = R \times L$

引張材反力	引張材設置	引張材張力	
R	間隔 L	P	
kN/m	m	kN/本	
24.94	2.000	49.88	

3)応力度

$$\sigma = \frac{P \times 10^3}{n \times A} \le \sigma \ a$$

応力度 N/mm²	許容応力度 sa N/mm²	判	定
102	176		

(2)下段引張材の検討

1)使用断面

使用径 : 85(mm) 使用材質 : 高張力鋼690 許容応力度 : 176(N/mm²) 引張材設置間隔L : 2.000(m) 引張材使用本数n : 1(本)

引張材断面積 A: 85²×(/4)(mm²)

2)張力の算定

 $P = R \times L$

引張材反力	引張材設置	引張材張力	
R	間隔 L	P	
kN/m	m	kN/本	
372.06	2.000	744.12	

3)応力度

$$\sigma = \frac{P \times 10^3}{n \times A} \le \sigma \, a$$

応力度 N/mm²	許容応力度 sa N/mm²	判	定
131	176		

2.4.5 腹起し材応力度

(1)上段腹起し材の検討

1)使用断面

使用鋼材 : [125×65×6×8

使用材質 : SS400

許容応力度: 140(N/mm²) 設置間隔: 2.000(m)

2)モーメントの算定

$$M = \frac{P \times L}{10}$$

引張材張力	引張材設置	モーメント	
P	間隔 L	M	
kN/本	m	kN.m/m	
49.88	2.000		

3)応力度

$$\sigma = \frac{M \times 10^8}{Z \times 10^3} \le \sigma \, a$$

Z:断面係数(= 67×2cm³)

2枚で1組扱いとし、登録鋼材の断面係数を2倍扱いとする。

応力度 N/mm²	許容応力度 sa N/mm²	判	定
74	140		

(2)下段腹起し材の検討

1)使用断面

使用鋼材 : [380×100×10.5×16

使用材質 : SS400

許容応力度: 140(N/mm²) 設置間隔: 2.000(m)

2)モーメントの算定

$$M = \frac{P \times L}{10}$$

引張材張力	引張材設置	モーメント
P	間隔 L	M
kN/本	m	kN.m/m
744.12	2.000	148.82

3)応力度

$$\sigma = \frac{M \times 10^6}{Z \times 10^3} \le \sigma$$
 a

Z:断面係数(= 763×2cm³)

2枚で1組扱いとし、登録鋼材の断面係数を2倍扱いとする。

応力度 N/mm²	許容応力度 sa N/mm²	判	定
98	140		

2.4.6 4C> hの検討

(1)照査方法

内部摩擦角が0の一様な粘性土地盤の場合には、次式を満足しなければ根入れ長の照査(極限平衡法)を満たし得ないので、別途地盤改良などの対策が必要となる。ここでは、堤体区間の現地盤面で照査する。

4c> ihi ここに、

c : 現地盤面直下の地盤の粘着力(kN/m²)

i:引張材取り付け点から下の中詰土の各層の単位体積重量(kN/m³)

hi : 引張材取り付け点から下の中詰土の各層の層厚(m)

(2)計算結果一覧

照査面 : G.L. 0.000 (m) 照査面直下の粘着力: c = 20.0 (kN/m²)

残留水位 G.L.(m)	4 • c kN/m²	$h + q$ kN/m^2	判定
0.000	80.00	9.00	

(3) ihi

集計範囲は、引張材位置から現地盤面までとする。

No	層 上 面 標 高 G.L.(m)	層 下 面 標 高 G.L.(m)	層 厚 hi (m)	土 の 単位重量 (kN/m³)	土 の 有効重量 i・hi (kN/m²)
1	0.500	0.000	0.500	18.0	9.00
			0.500		9.00

3章 検討ケース(地震時)

3.1 外力の計算

地震時の設計震度 : Kh = 0.10 見掛け震度の考え方:河川基準式

$$\mathrm{Kh'} = \frac{\gamma \, \mathrm{sat}}{\gamma \, \mathrm{sat} - \gamma \, \mathrm{w}} \times \mathrm{Kh}$$

ここに、

sat: 土の飽和重量 w : 水の単位重量

3.1.1 安定計算時の土圧・水圧強度表

安定計算時に用いる水圧・土圧強度表を示す。

(1)水圧強度表(堤外区間:作用外力)

M.W.L. 0.000(m) L.W.L. 0.000(m)

壁体先端地盤種類:砂質土

水圧強度=0

(2)主働土圧強度表(堤外区間:作用外力)

$$Ka = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}(\theta) \cdot [1 + \sqrt{-(\sin \phi \cdot \sin(\phi - \theta) / \cos \theta)}]^{2}}$$

粘性土地盤の場合、現地盤面以下10mにおいてKh=0として、その間の主働土圧は直線的に変化するものとする。現地盤以下10mより深い粘性土地盤のKhは0とする。

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 摩擦角 (度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	震 度 k'	地震時 合成角 (度)	土 圧 係 数 Ka	採用主働 土圧強度 pa kN/m²
1	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	0.2429 0.2429	13.65 13.65	1.000 1.000	0.00 0.00
2	-5.000 -10.000	5.000	10.0	30.00	0.0 0.0	30.00 80.00	0.2000 0.2000	11.31 11.31	0.473 0.473	14.20 37.86
3	-10.000 -15.000	5.000	10.0	30.00	0.0 0.0	80.00 130.00	0.2000 0.2000	11.31 11.31	0.473 0.473	37.86 61.52

(3)受働土圧強度表(堤内区間:作用外力)

$$pp = Kp (h+q) + 2c Kp$$

$$\mathrm{Kp} = \frac{\cos^2(\phi - \theta)}{\cos^2(\theta) \cdot [1 - \sqrt{\sin \phi \cdot \sin(\phi - \theta) / \cos \theta}]^2}$$

No	深 さ GL(m)	層 厚 h (m)	土の単重	内部摩擦角(度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	震 度 k'	地震時 合成角 (度)	土 圧 係 数 Kp	受 働 土圧強度 pp kN/m²
1	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	0.2429 0.2429	13.65 13.65	1.000 1.000	40.00 70.00
2	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	30.00 130.00	0.2000 0.2000	11.31 11.31	2.629 2.629	78.87 341.79

(4)主働土圧強度表(堤体区間:照査面より上の抵抗モーメント計算時)

I	No	深 さ GL(m)	層 厚 h (m)	土の単重	内部摩擦角(度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	震 度 k'	地震時 合成角 (度)	土 圧 係 数 Ka	採用主働 土圧強度 pa kN/m²
	1	8.000 0.500	7.500	18.0	30.00	0.0	0.00 135.00	0.1000 0.1000	5.71 5.71	0.397 0.397	0.00 53.53
	2	0.500 0.000	0.500	18.0	30.00	0.0 0.0	135.00 144.00	0.1000 0.1000	5.71 5.71	0.397 0.397	53.53 57.10
	3	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	144.00 174.00	0.2429 0.2429	13.65 13.65	1.000 1.000	104.00 134.00
	4	-5.000 -10.000	5.000	10.0	30.00	0.0 0.0	174.00 224.00	0.2000 0.2000	11.31 11.31	0.473 0.473	82.35 106.01
	5	-10.000 -15.000	5.000	10.0	30.00	0.0	224.00 274.00	0.2000 0.2000	11.31 11.31	0.473 0.473	106.01 129.67

(5)受働土圧強度表 (堤体区間:照査面より上の抵抗モーメント計算時)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 部摩擦角	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	震 度 k'	地震時 合成角 (度)	土 圧 係 数 Kp	受 働 土圧強度 pp kN/m²
1	8.000 0.500	7.500	18.0	30.00	0.0 0.0	0.00 135.00	0.1000 0.1000	5.71 5.71	2.821 2.821	0.00 380.88
2	0.500 0.000	0.500	18.0	30.00	0.0 0.0	135.00 144.00	0.1000 0.1000	5.71 5.71	2.821 2.821	380.88 406.27
3	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	144.00 174.00	0.2429 0.2429	13.65 13.65	1.000 1.000	184.00 214.00
4	-5.000 -15.000	10.000	10.0	30.00	0.0	174.00 274.00	0.2000 0.2000	11.31 11.31	2.629 2.629	457.47 720.38

(6)受働土圧強度表(堤外区間:照査面より下の受働抵抗モーメント用)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 部 摩擦角 (度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	震 度 k'	地震時 合成角 (度)	土 圧 係 数 Kp	受 働 土圧強度 pp kN/m²
	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	0.2429 0.2429	13.65 13.65	1.000 1.000	40.00 70.00
2	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	30.00 130.00	0.2000 0.2000	11.31 11.31	2.629 2.629	78.87 341.79

(7)慣性力用震度と水平力分布表(堤体区間:照査面より上の慣性力モーメント用)

慣性力を求める際の震度分布は、堤体区間の現地盤面から10mの深さで震度が0となるように直線的に 震度を低減して計算する。本プログラムでは、水位に関係なく、空気中の設計震度分布を想定し、各地層 毎に、下式にて慣性力強度を計算する。なお、基本となる設計震度は、地震時ケースで入力した空気中の 設計震度を用いる。

pe = $\times B \times Kh$

ここに、

pe: 各層(上下面)毎の慣性力強度(水平力)

: 各層毎の湿潤重量

B:決定堤体幅(8.000)m

Kh: 各層(上下面)毎の空気中の設計震度

	深さ	層厚	土の	D単位重	量	電 由	慣性力用
No	が GL(m)	h (m)	湿潤 t	水中	飽 和 sat	震 度 Kh	水平成分 pe= .B.Kh
1	8.000 0.500	7.500	18.0	10.0	20.0	0.1000 0.1000	14.40 14.40
2	0.500 0.000	0.500	18.0	10.0	20.0	0.1000 0.1000	14.40 14.40
3	0.000 -5.000	5.000	16.0	6.0	17.0	0.1000 0.0500	12.80 6.40
4	-5.000 -10.000	5.000	18.0	10.0	20.0	0.0500 0.0000	7.20 0.00
5	-10.000 -15.000	5.000	18.0	10.0	20.0	0.0000 0.0000	0.00 0.00

は直線的に震度を低減した箇所

3.1.2 堤内側矢板計算時の土圧・水圧強度表

堤内側矢板計算時に用いる水圧・土圧強度表を示す。

(1)水圧強度表(堤体区間)

R.W.L. 0.000(m)

L.W.L. 0.000(m)

壁体先端地盤種類:砂質土

水圧強度=0

(2)主働土圧強度表(堤体区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 摩擦角 (度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	震 度 k'	地震時 合成角 (度)	土 圧 係 数 Ka	採用主働 土圧強度 pa kN/m²
1	8.000 0.500	7.500	18.0	30.00	0.0 0.0	0.00 135.00	0.1000 0.1000	5.71 5.71	0.397 0.397	0.00 53.53
2	0.500 0.000	0.500	18.0	30.00	0.0	135.00 144.00	0.1000 0.1000	5.71 5.71	0.397 0.397	53.53 57.10
3	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	144.00 174.00	0.2429 0.2429	13.65 13.65	1.000 1.000	104.00 134.00
4	-5.000 -10.000	5.000	10.0	30.00	0.0 0.0	174.00 224.00	0.2000 0.2000	11.31 11.31	0.473 0.473	82.35 106.01
5	-10.000 -15.000	5.000	10.0	30.00	0.0 0.0	224.00 274.00	0.2000 0.2000	11.31 11.31	0.473 0.473	106.01 129.67

(3)受働土圧強度表(堤内区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 部 摩擦角 (度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	震 度 k'	地震時 合成角 (度)	土 圧 係 数 Kp	受 働 土圧強度 pp kN/m²
1	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	0.2429 0.2429	13.65 13.65	1.000 1.000	40.00 70.00
2	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	30.00 130.00	0.2000 0.2000	11.31 11.31	2.629 2.629	78.87 341.79

は無効層で解析上の土圧強度は0扱いとする

(4)静止土圧強度表(堤内区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	有 効 上載圧 rh+q kN/m²	土 圧 係 数 Ko	静 土圧強度 po kN/m²
1	0.000 -5.000	5.000	6.0	0.00 30.00	0.500	0.00 15.00
2	-5.000 -15.000	10.000	10.0	30.00 130.00	0.500	15.00 65.00

は無効層で解析上の土圧強度は0扱いとする

3.1.3 堤外側矢板計算時の土圧・水圧強度表

堤外側矢板計算時に用いる水圧・土圧強度表を示す。

(1)水圧強度表(堤体区間)

R.W.L. 0.000(m)

L.W.L. 0.000(m)

壁体先端地盤種類:砂質土

水圧強度=0

(2)主働土圧強度表(堤体区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	内 部摩擦角	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	震 度 k'	地震時 合成角 (度)	土 圧 係 数 Ka	採用主働 土圧強度 pa kN/m²
1	8.000 0.500	7.500	18.0	30.00	0.0 0.0	0.00 135.00	0.1000 0.1000	5.71 5.71	0.397 0.397	0.00 53.53
2	0.500 0.000	0.500	18.0	30.00	0.0 0.0	135.00 144.00	0.1000 0.1000	5.71 5.71	0.397 0.397	53.53 57.10
3	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	144.00 174.00	0.2429 0.2429	13.65 13.65	1.000 1.000	104.00 134.00
4	-5.000 -10.000	5.000	10.0	30.00	0.0 0.0	174.00 224.00	0.2000 0.2000	11.31 11.31	0.473 0.473	82.35 106.01
5	-10.000 -15.000	5.000	10.0	30.00	0.0 0.0	224.00 274.00	0.2000 0.2000	11.31 11.31	0.473 0.473	106.01 129.67

(3)受働土圧強度表(堤外区間)

No	深 さ GL(m)	層 厚 h (m)	土の 単重	内 部 摩擦角 (度)	粘着力 c kN/m²	有 効 上載圧 rh+q kN/m²	震 度 k'	地震時合成角	土 圧 係 数 Kp	受 働 土圧強度 pp kN/m²
1	0.000 -5.000	5.000	6.0	0.00	20.0 20.0	0.00 30.00	0.2429 0.2429	13.65 13.65	1.000 1.000	40.00 70.00
2	-5.000 -15.000	10.000	10.0	30.00	0.0 0.0	30.00 130.00	0.2000 0.2000	11.31 11.31	2.629 2.629	78.87 341.79

は無効層で解析上の土圧強度は0扱いとする

(4)静止土圧強度表(堤外区間)

No	深 さ GL(m)	層 厚 h (m)	土の単重	有 効 上載圧 rh+q kN/m²	土 圧 係 数 Ko	静 土圧強度 po kN/m²
1	0.000 -5.000	5.000	6.0	0.00 30.00	0.500	0.00 15.00
2	-5.000 -15.000	10.000	10.0	30.00 130.00	0.500	15.00 65.00

は無効層で解析上の土圧強度は0扱いとする

3.2 安定計算

3.2.1 壁体のせん断変形破壊に対する検討

(1)結果要旨

1)照查式

壁体幅B = 8.000、高さH = 8.000(m)について、下式にて照査を行う。

$$\frac{Mr}{Md} \ge FS$$

ここに、

FS:必要安全率(1.00)

Md: 照査面におけるせん断変形モーメント (kN・m/m) Mr: 照査面におけるせん断抵抗モーメント (kN・m/m)

$$Mr = Mro \times (1 + \frac{d}{H}) + Msp$$

$$Mro = (pRP - pRA) ydy$$

ここに、

Mro:中詰土の基準せん断抵抗モーメント

d :現地盤面から照査面深さ

H:壁体高さ(壁体天端から堤体区間の現地盤まで) pRP:照査面から上方yの位置の受働土圧強度(kN/m²) pRA:照査面から上方yの位置の主働土圧強度(kN/m²) y:pRP、pRAが作用する照査面からの距離(m)

yo :中詰部の仮想すべり面の交点の座標

Msp:2列の矢板が発揮する抵抗モーメント

堤内側と堤外側の矢板の抵抗の小さい方で代表させ、2倍で評価。

Msp = 2 x (Msp1またはMsp2のうち小さい値)

Msp1:矢板が発揮できる抵抗モーメント

 $Msp1 = a \cdot Zsp$

a:使用矢板の許容応力度(N/mm²)

Zsp:使用矢板の継手効率を考慮した断面係数(mm³/m)

Msp2:照査面以深の根入れ地盤が支持できる抵抗モーメント

 $Msp2 = Ppu \times hpu$

Ppu: 照査面下から矢板先端までの受働土圧合力

hpu: Ppuの照査面からの作用距離

2) 各照査面における照査結果

照査箇所名	照 査 面	照査面の	変形モーメント	抵抗モーメント	安全率
	G.L.(m)	深さd	Md (kN.m/m)	Mr (kN.m/m)	F
根入れ先端	-10.000	10.000	0.00	3904.36	999.99 1.00
地層境界面	-5.000	5.000	545.13	2060.60	3.78 1.00
現地盤面	0.000	0.000	460.80	2297.50	4.99 1.00

(2)照査面(根入れ先端: G.L.-10.000m)

1)照査結果

項	目	数 値
変形モーメント	Md(kN.m/m)	0.00
抵抗モーメント	Mr(kN.m/m)	3904.36
安全率	Mr / Md	999.99 1.00

2)変形モーメント (Md) の算定

変形モーメント内訳	モーメント
水圧モーメント Mw 主働土圧モーメント Ma 受働土圧モーメント - Mp その他荷重モーメント Mc 慣性力モーメント Me 動水圧モーメント Mwd	0.00 276.07 3533.66 0.00 2046.13 0.00
変形モーメント Md(kN.m/m)	0.00

a.水圧モーメント

 $Pw = 0.00kN/m \qquad Mw = 0.00kN.m/m$

b.主働土圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pa kN/m²	水平力 Pa kN/m	アーム長 y m	モーメント Ma kN.m/m
1	0.000 -5.000	5.000	0.00 0.00	0.00	7.500	0.00
2	-5.000 -10.000	5.000	14.20 37.86	130.15	2.121	276.07
				130.15		276.07

c.受働土圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

N	Ю	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
	1	0.000 -5.000	5.000	40.00 70.00	275.00	7.273	2000.00
	2	-5.000 -10.000	5.000	78.87 210.33	723.01	2.121	1533.66
					998.01		3533.66

d. その他荷重モーメント

- Pc = 0.00(kN.m/m)
- Mc = 0.00(kN.m/m)
- e.慣性力モーメント

慣性力モーメントは上載荷重分と壁体自重分の合計値とする。

・全慣性力

Fe = Pe + Pew

= 181.20(kN/m)

Me = Me + Mew

= 2046.13(kN.m/m)

・上載荷重分

Pew = $q \times B \times Kh$

0.00(kN/m)

Mew = Pew x (照査面から壁体天端までの高さ)

0.00(kN.m/m)

・壁体自重分

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	慣性力 pe kN/m²	水平力 Pe kN/m	アーム長 y m	モーメント Me kN.m/m
1	8.000 0.500	7.500	14.40 14.40	108.00	14.250	1539.00
2	0.500 0.000	0.500	14.40 14.40	7.20	10.250	73.80
3	0.000 -5.000	5.000	12.80 6.40	48.00	7.778	373.33
4	-5.000 -10.000	5.000	7.20 0.00	18.00	3.333	60.00
				181.20		2046.13

f.動水圧モーメント

・動水圧の合力、作用位置の一般式

外水位、内水位が存在する場合には、外力として自由水の部分に動水圧を以下のように考慮し、 作用力及びモーメントは両者の合計値とする。

Fwd =
$$\frac{7}{12} \cdot \text{Kh} \cdot \gamma \text{ w} \cdot \text{he}^{1/2} \cdot \text{y}^{3/2}$$

Lwd = $\frac{3}{5} \cdot \text{y}$

Mwd = Fwd×(照査面から合力作用位置までの距離)

ここに、

Fwd:動水圧の合力

Lwd: 水位面からの合力作用位置までの距離

Mwd: 照査面での動水圧モーメント

Kh:設計震度(0.10) w:水の単位体積重量

he:水位面から現地盤面までの距離

y :水位面から照査面までの距離 (ただし、y he)

・全動水圧

Fwd = 0.00(kN/m)Mwd = 0.00(kN.m/m)

• 外側動水圧

動水圧は作用しない。

• 内側動水圧

動水圧は作用しない。

3)抵抗モーメント (Mr) の算定

抵抗モーメント内訳	モーメント
Mro · (1 + d / H) Msp = 2 × min (Msp1、Msp2) Msp1 Msp2	3904.36 0.00 510.30 0.00
抵抗モーメント Mr(kN.m/m)	3904.36

a. 照査面より上の抵抗モーメント

計算に使用する地層条件は、堤体区間とする。

$$Mro \cdot (1+d/H) = 1735.27 \times (1+1.250) = 3904.36(kN.m/m)$$

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

N	No	深 さ GL(m)	層 厚 h (m)	受働強度 pRP kN/m²	主働強度 pRA kN/m²	側圧強度 pRP-pRA kN/m²	水平力 Pr kN/m	アーム長 y m	モーメント Mro kN.m/m
	1	-7.200 -10.000	2.800	515.31 588.92	92.76 106.01	422.55 482.91	1267.65	1.369	1735.27
							1267.65		1735.27

b.yoの計算過程

照査面と堤外側矢板の交点を開始点として上方に受働崩壊面を、同じく堤内側矢板の交点を開始点 として上方に主働崩壊面を想定する。

両者の崩壊面の交点位置が、高さyoとなる。また、交点幅は堤体幅になる。ただし、交点の高さ yoが壁体天端より上になる場合は、交点高さを壁体天端までとし、この場合の交点幅は堤体幅以下 になる。よって、下表の崩壊幅の合計値が堤体幅と同じ場合はyoが堤体天端以下にあることがわか り、堤体幅以下の場合は、voは堤体天端までとしていることがわかる。

	深	ੇ	層厚肉部		層厚内部地		層厚内部地震時		地震時	地震時		主働崩壊面		崩壊幅
No	上 面 GL(m)	下 面 GL(m)	h (m)	摩擦角 (度)	合成角 (度)	崩壊角 p度	崩壊幅Bp	崩壊角 a度	崩壊幅Ba m	Bp + Ba m				
1	-7.200	-10.000	2.800	30.00	11.31	26.50	5.616	49.60	2.383	7.998				
交点	交点幅 Bp + Ba								7.998					

・受働崩壊面

$$Bp = cot(p) \times h$$

$$\cot(\xi p) = \tan(\phi) + \sec(\phi) \sqrt{\frac{\cos(-\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$p = 90.0 - tan^{-1}(cot(p))$$

・主働崩壊面

$$Ba = \cot(a) \times h$$

$$\cot(\xi a) = -\tan(\phi) + \sec(\phi) \sqrt{-\frac{\cos(\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$a = 90.0 - tan^{-1}(cot(a))$$

- ・sin() 0の場合は、cot(p) = cot(a) = tan()+sec()とする。
- c. 照査面より下の受働抵抗モーメント

$$Msp = 2 \times min (Msp1, Msp2)$$

$$= 2 \times min$$
 (510.30)

$$0.00) =$$

$$0.00) = 0.00(kN.m/m)$$

d.矢板の抵抗モーメント(Msp1)の計算

堤内側か堤外側のいすれか小さい方で代表させる。

項	目	単	位	堤内側矢板		位 堤内側矢板 堤外側矢板		側矢板
使用鋼材名 補正前の断面係数 断面係数用有効率 計算に用いる断面係数 許容応力度	Z Z a	× 10 ⁻⁶ m × 10 ⁻⁶ m × 10 ⁻⁶ m × 10 ³ kN	 ³ /m	VL型	3150 0.60 1890 270.0	VL型	3150 0.60 1890 270.0	
抵抗モーメントMsp1 = a×	: Z	kN •	m/m		510.30		510.30	

e. 照査面より下の受働土圧モーメント(Msp2)の計算

矢板の抵抗モーメントは、照査面より下の受働抵抗モーメントより大きくなり得ないため照査面を 支点とした受働土圧モーメントを求める。

計算に使用する地層条件は、堤外区間で代表させることとする。

ただし、照査面が根入れ先端なので、Msp2 = 0.0(kN・m/m)である。

(3) 照査面(地層境界面: G.L. -5.000m)

1)照査結果

項	目	数 値
変形モーメント	Md(kN.m/m)	545.13
抵抗モーメント	Mr(kN.m/m)	2060.60
安全率	Mr/Md	3.78 1.00

2)変形モーメント (Md) の算定

変形モーメント内訳	モーメント
水圧モーメント Mw 主働土圧モーメント Ma 受働土圧モーメント - Mp その他荷重モーメント Mc 慣性力モーメント Me 動水圧モーメント Mwd	0.00 0.00 625.00 0.00 1170.13 0.00
変形モーメント Md(kN.m/m)	545.13

a.水圧モーメント

Pw = 0.00kN/m

Mw = 0.00kN.m/m

b.主働土圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pa kN/m²	水平力 Pa kN/m	アーム長 y m	モーメント Ma kN.m/m
1	0.000 -5.000	5.000	0.00 0.00	0.00	2.500	0.00
				0.00		0.00

c.受働土圧モーメント

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	0.000 -5.000	5.000	40.00 70.00	275.00	2.273	625.00
				275.00		625.00

d. その他荷重モーメント

- Pc = 0.00(kN.m/m)
- Mc = 0.00(kN.m/m)
- e. 慣性力モーメント

慣性力モーメントは上載荷重分と壁体自重分の合計値とする。

・全慣性力

Fe = Pe + Pew

= 163.20(kN/m)

Me = Me + Mew

= 1170.13(kN.m/m)

・上載荷重分

Pew = $q \times B \times Kh$

$$= 0.00(kN/m)$$

Mew = Pew x (照査面から壁体天端までの高さ)

$$= 0.00(kN.m/m)$$

・壁体自重分

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	慣性力 pe kN/m²	水平力 Pe kN/m	アーム長 y m	モーメント Me kN.m/m
1	8.000 0.500	7.500	14.40 14.40	108.00	9.250	999.00
2	0.500 0.000	0.500	14.40 14.40	7.20	5.250	37.80
3	0.000 -5.000	5.000	12.80 6.40	48.00	2.778	133.33
				163.20		1170.13

f.動水圧モーメント

・動水圧の合力、作用位置の一般式

外水位、内水位が存在する場合には、外力として自由水の部分に動水圧を以下のように考慮し、 作用力及びモーメントは両者の合計値とする。

$$Fwd = \frac{7}{12} \cdot Kh \cdot \gamma w \cdot he^{1/2} \cdot y^{3/2}$$

Lwd =
$$\frac{3}{5} \cdot y$$

Mwd = Fwd×(照査面から合力作用位置までの距離)

ここに、

Fwd:動水圧の合力

Lwd: 水位面からの合力作用位置までの距離

Mwd: 照査面での動水圧モーメント

Kh:設計震度(0.10) w:水の単位体積重量

he:水位面から現地盤面までの距離

y :水位面から照査面までの距離(ただし、y he)

・全動水圧

Fwd = 0.00(kN/m)Mwd = 0.00(kN.m/m)

• 外側動水圧

動水圧は作用しない。

• 内側動水圧

動水圧は作用しない。

3)抵抗モーメント (Mr) の算定

抵抗モーメント内訳	モーメント
Mro · (1 + d / H) Msp = 2 × min (Msp1, Msp2) Msp1 Msp2	1040.00 1020.60 510.30 2081.39
抵抗モーメント Mr(kN.m/m)	2060.60

a. 照査面より上の抵抗モーメント

計算に使用する地層条件は、堤体区間とする。

$$Mro \cdot (1+d/H) = 640.00 \times (1+0.625) = 1040.00(kN.m/m)$$

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	受働強度 pRP kN/m²	主働強度 pRA kN/m²	側圧強度 pRP-pRA kN/m²	水平力 Pr kN/m	アーム長 y m	モーメント Mro kN.m/m
1	-1.000 -5.000	4.000	190.00 214.00	110.00 134.00	80.00 80.00	320.00	2.000	640.00
						320.00		640.00

b.yoの計算過程

照査面と堤外側矢板の交点を開始点として上方に受働崩壊面を、同じく堤内側矢板の交点を開始点として上方に主働崩壊面を想定する。

両者の崩壊面の交点位置が、高さyoとなる。また、交点幅は堤体幅になる。ただし、交点の高さ yoが壁体天端より上になる場合は、交点高さを壁体天端までとし、この場合の交点幅は堤体幅以下 になる。よって、下表の崩壊幅の合計値が堤体幅と同じ場合はyoが堤体天端以下にあることがわか り、堤体幅以下の場合は、yoは堤体天端までとしていることがわかる。

	深	ਣੇ	層厚内部		地震時	受働	崩壊面	主働	崩壊面	崩壊幅
No	上 面 GL(m)	下面 GL(m)	h (m)	摩擦角 (度)	合成角 (度)	崩壊角 p度	崩壊幅Bp	崩壊角 a度	崩壊幅Ba m	Bp + Ba m
1	-1.000	-5.000	4.000	0.00	13.65	45.00	4.000	45.00	4.000	8.000
交点	点幅 Bp+B	a								8.000

・受働崩壊面

$$Bp = cot(p) \times h$$

$$\cot(\xi p) = \tan(\phi) + \sec(\phi) \sqrt{\frac{\cos(-\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$p = 90.0 - tan^{-1}(cot(p))$$

・主働崩壊面

$$Ba = cot(a) \times h$$

$$\cot(\xi a) = -\tan(\phi) + \sec(\phi) \sqrt{-\frac{\cos(\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$a = 90.0 - tan^{-1}(cot(a))$$

- ・sin() 0の場合は、cot(p) = cot(a) = tan()+sec()とする。
- c. 照査面より下の受働抵抗モーメント

$$Msp = 2 \times min (Msp1, Msp2)$$

$$= 2 \times min ($$
 510.30, 2081.39) $=$ 1020.60(kN.m/m)

d.矢板の抵抗モーメント(Msp1)の計算

堤内側か堤外側のいすれか小さい方で代表させる。

項	目	単	位	堤内側矢板		堤外側矢板	
使用鋼材名 補正前の断面係数 断面係数用有効率 計算に用いる断面係数 許容応力度	Z Z a	× 10 ⁻⁶ m × 10 ⁻⁶ m × 10 ³ kN	 1 ³ /m	VL <u>型</u>	3150 0.60 1890 270.0	VL型	3150 0.60 1890 270.0
抵抗モーメントMsp1 = a	× Z	kN ·	· m/m		510.30		510.30

e. 照査面より下の受働土圧モーメント(Msp2)の計算

矢板の抵抗モーメントは、照査面より下の受働抵抗モーメントより大きくなり得ないため照査面を 支点とした受働土圧モーメントを求める。

計算に使用する地層条件は、堤外区間で代表させることとする。

アーム長 = 照査面から層上面までの距離 + (h / 3) x (p1 + 2 x p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	-5.000 -10.000	5.000	78.87 210.33	723.01	2.879	2081.39
				723.01		2081.39

(4) 照査面 (現地盤面 : G.L. 0.000m)

1) 照査結果

項	目	数 値
変形モーメント	Md(kN.m/m)	460.80
抵抗モーメント	Mr(kN.m/m)	2297.50
安全率	Mr/Md	4.99 1.00

2)変形モーメント (Md)の算定

変形モーメント内訳	モーメント
水圧モーメント Mw 主働土圧モーメント Ma 受働土圧モーメント - Mp その他荷重モーメント Mc 慣性力モーメント Me 動水圧モーメント Mwd	0.00 0.00 0.00 0.00 460.80 0.00
変形モーメント Md(kN.m/m)	460.80

a.水圧モーメント

Pw = 0.00kN/m

Mw =

0.00kN.m/m

b.主働土圧モーメント

Pa =

0.00kN/m

Ma=

0.00kN.m/m

c.受働土圧モーメント

Pp =

0.00kN/m

Mp =

0.00kN.m/m

d.その他荷重モーメント

- Pc = 0.00(kN.m/m)
- Mc = 0.00(kN.m/m)
- e. 慣性力モーメント

慣性力モーメントは上載荷重分と壁体自重分の合計値とする。

・全慣性力

Fe = Pe + Pew

= 115.20(kN/m)

Me = Me + Mew

= 460.80(kN.m/m)

・上載荷重分

Pew = $q \times B \times Kh$

= 0.00(kN/m)

Mew = Pew x (照査面から壁体天端までの高さ)

= 0.00(kN.m/m)

・壁体自重分

アーム長 = 照査面から層下面までの距離 + (h/3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	慣性力 pe kN/m²	水平力 Pe kN/m	アーム長 y m	モーメント Me kN.m/m
1	8.000 0.500	7.500	14.40 14.40	108.00	4.250	459.00
2	0.500 0.000	0.500	14.40 14.40	7.20	0.250	1.80
				115.20		460.80

f.動水圧モーメント

・動水圧の合力、作用位置の一般式

外水位、内水位が存在する場合には、外力として自由水の部分に動水圧を以下のように考慮し、 作用力及びモーメントは両者の合計値とする。

Fwd =
$$\frac{7}{12}$$
 · Kh · γ w · he^{1/2} · y^{3/2}
Lwd = $\frac{3}{5}$ · y

Mwd = Fwd×(照査面から合力作用位置までの距離)

ここに、

Fwd:動水圧の合力

Lwd: 水位面からの合力作用位置までの距離

Mwd: 照査面での動水圧モーメント

Kh:設計震度(0.10) w:水の単位体積重量

he:水位面から現地盤面までの距離

y :水位面から照査面までの距離(ただし、y he)

・全動水圧

Fwd = 0.00(kN/m)Mwd = 0.00(kN.m/m)

• 外側動水圧

動水圧は作用しない。

・内側動水圧

動水圧は作用しない。

3)抵抗モーメント (Mr) の算定

抵抗モーメント内訳	モーメント
Mro · (1 + d / H) Msp = 2 × min (Msp1, Msp2) Msp1 Msp2	1276.90 1020.60 510.30 6446.45
抵抗モーメント Mr(kN.m/m)	2297.50

a. 照査面より上の抵抗モーメント

計算に使用する地層条件は、堤体区間とする。

$$Mro \cdot (1+d/H) = 1276.90 \times (1+0.000) = 1276.90(kN.m/m)$$

アーム長 = 照査面から層下面までの距離 + (h / 3) x (2 x p1 + p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	受働強度 pRP kN/m²	主働強度 pRA kN/m²	側圧強度 pRP-pRA kN/m²	水平力 Pr kN/m	アーム長 y m	モーメント Mro kN.m/m
1	3.149 0.500	2.649	246.35 380.88	34.63 53.53	211.72 327.34	713.99	1.730	1235.07
2	0.500 0.000	0.500	380.88 406.27	53.53 57.10	327.34 349.16	169.13	0.247	41.83
						883.12		1276.90

b.yoの計算過程

照査面と堤外側矢板の交点を開始点として上方に受働崩壊面を、同じく堤内側矢板の交点を開始点 として上方に主働崩壊面を想定する。

両者の崩壊面の交点位置が、高さyoとなる。また、交点幅は堤体幅になる。ただし、交点の高さyoが壁体天端より上になる場合は、交点高さを壁体天端までとし、この場合の交点幅は堤体幅以下になる。よって、下表の崩壊幅の合計値が堤体幅と同じ場合はyoが堤体天端以下にあることがわかり、堤体幅以下の場合は、yoは堤体天端までとしていることがわかる。

No	深	ਣੇ	層厚	内 部 摩擦角 (度)	地震時 合成角 (度)	受働崩壊面		主働崩壊面		崩壊幅
	上面 GL(m)	下面 GL(m)	h (m)			崩壊角 p度	崩壊幅Bp	崩壊角 a度	崩壊幅Ba m	Bp + Ba m
1 2	3.149 0.500	0.500 0.000	2.649 0.500	30.00 30.00	5.71 5.71	28.43 28.43	4.893 0.924	55.30 55.30	1.835 0.346	6.728 1.270
交点幅 Bp + Ba									7.998	

・受働崩壊面

 $Bp = cot(p) \times h$

$$\cot(\xi p) = \tan(\phi) + \sec(\phi) \sqrt{\frac{\cos(-\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$p = 90.0 - tan^{-1}(cot(p))$$

・主働崩壊面

Ba = $\cot(a) \times h$

$$\cot(\xi a) = -\tan(\phi) + \sec(\phi) \sqrt{-\frac{\cos(\theta)\sin(\phi)}{\sin(\phi - \theta)}}$$

$$a = 90.0 - tan^{-1}(cot(a))$$

- ・sin() 0の場合は、cot(p) = cot(a) = tan()+sec()とする。
- c. 照査面より下の受働抵抗モーメント

 $Msp = 2 \times min (Msp1, Msp2)$

$$= 2 \times min$$
 (510.30, 6446.45) = 1020.60(kN.m/m)

d.矢板の抵抗モーメント(Msp1)の計算

堤内側か堤外側のいすれか小さい方で代表させる。

項	目	単	位	堤内	側矢板	堤外·	側矢板
使用鋼材名 補正前の断面係数 断面係数用有効率 計算に用いる断面係数 許容応力度	Z Z a	× 10 ⁻⁶ n × 10 ⁻⁶ n × 10 ⁻⁶ n	 n³/m	VL型	3150 0.60 1890 270.0	VL型	3150 0.60 1890 270.0
抵抗モーメントMsp1 = a:	× Z	kN	• m/m		510.30		510.30

e.照査面より下の受働土圧モーメント(Msp2)の計算

矢板の抵抗モーメントは、照査面より下の受働抵抗モーメントより大きくなり得ないため照査面を

支点とした受働土圧モーメントを求める。

計算に使用する地層条件は、堤外区間で代表させることとする。

アーム長 = 照査面から層上面までの距離 + (h / 3) x (p1 + 2 x p2) / (p1 + p2)

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	0.000 -5.000	5.000	40.00 70.00	275.00	2.727	750.00
2	-5.000 -10.000	5.000	78.87 210.33	723.01	7.879	5696.45
				998.01		6446.45

3.2.2 壁体の滑動に対する検討

(1)結果要旨

1)照查式

壁体幅B = 8.000、高さH = 8.000(m)について、下式にて照査を行う。

$$\frac{Fr}{Fd} \ge FS$$

ここに、

FS:必要安全率(1.00)

Fd:壁体に作用する水平力の総和(kN/m)

Fr:滑動抵抗力の総和(kN/m)

Fr = Fpp + Fs ここに、

Fpp:受働土圧による水平力

Fs : 照査面直下の地盤の水平せん断抵抗力

 $Fs = c \cdot B + W \cdot tan$

W :壁体内土重量(kN/m)

: 照査面直下の土の内部摩擦角(度) c : 照査面直下の土の粘着力(kN/m²)

2) 照査結果

照査は根入れ先端でのみ行う。

照査箇所名	照 査 面	照査面の	水平力総和	抵抗力総和	安全率
	G.L.(m)	深さd	Fd(kN/m)	Fr(kN/m)	F
根入れ先端	-10.000	10.000	311.35	2032.62	6.53 1.00

(2) 照査面(根入れ先端: G.L.-10.000m)

1)照査結果

項	目	数	値
水平力の総和	Fd(kN/m)	3	311.35
抵抗力の総和	Fr(kN/m)	20	32.62
安全率 F	r / Fd	6.53	1.00

2)水平力の総和 (Fd) の算定

水平力の内訳		水平力
水圧力 主働土圧力 その他荷重力 慣性力 動水圧力	Fw Fa Fc Fe Fwd	0.00 130.15 0.00 181.20 0.00
水平力の総和	Fd(kN/m)	311.35

a.水圧力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の水圧モーメント表参照。

b.主働土圧力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の主働土圧モーメント表参照。

c.その他の荷重

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時のその他荷重モーメント表参照。

d. 慣性力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の慣性力モーメント表参照。

e.動水圧力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の動水圧モーメント計算参照。

3) 滑動抵抗力の総和 (Fr) の算定

抵抗力の内訳	水平力
地盤の水平せん断抵抗力 Fs 受働土圧力 Fp	1034.61 998.01
抵抗力の総和 Fr(kN/m)	2032.62

a.地盤の水平せん断抵抗力 (Fs)の算定

 $Fs = c \cdot B + W \cdot tan$

$$= 0.00 \cdot 8.000 + 1792.00 \cdot \tan 30.00 \circ$$

$$= 1034.61(kN/m)$$

b.壁体内土重量(₩)

重量の計算範囲は、壁体天端から照査面(中詰土含む)までとする。堤体区間の地層データを用いる。

$$W = (ihi + q) \times B$$

$$= (224.00 + 0.00) \times 8.000 = 1792.00(kN/m)$$

ここに、qは上載荷重。

No	層 上 面 標 高 G.L.(m)	層 下 面 標 高 G.L.(m)	層 厚 hi (m)	土 の 単位重量 (kN/m³)	土 の 有効重量 i・hi (kN/m²)
1 2 3 4	8.000 0.500 0.000 -5.000	0.500 0.000 -5.000 -10.000	7.500 0.500 5.000 5.000	18.0 18.0 6.0 10.0	135.00 9.00 30.00 50.00
			18.000		224.00

c.受働土圧力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の受働土圧モーメント表参照。

3.2.3 基礎地盤の支持力に対する検討

(1)結果要旨

1)照查式

壁体幅B= 8.000、高さH= 8.000(m)について、下式にて照査を行う。

$$\frac{Qu}{V - \gamma 2 \cdot Df \cdot Be} \ge FS$$

Qu =Be
$$\{k \cdot c \cdot Nc + k \cdot \gamma \cdot 2 \cdot Df \cdot (Nq-1) + \frac{1}{2} \cdot \gamma \cdot 1 \cdot Be \cdot N\gamma \}$$

ここに、

FS : 必要安全率 (1.00)

Qu:荷重の偏心傾斜を考慮した地盤の極限支持力(kN/m)

V : 照査面に作用する鉛直成分(照査面より上の壁体内重量)(kN/m)

Be :偏心を考慮した基礎の有効載荷幅(m)

Be = B - 2e

B:堤体幅

e:荷重に偏心距離 (e=Mb/V)

Mb : 照査面に作用するモーメント

k : 根入れ効果に対する割増係数(=1.0とする)

c : 照査面直下の粘着力

Df: 現地盤から照査面までの距離

2:現地盤から照査面までの区間(Df)の土の平均単位体積重量。ただし、水以下は水中重量。

1: 照査面直下の支持地盤の土の単位重量。ただし、水以下は水中重量。

Nc,Nq,N : 荷重の偏心を考慮した支持力係数(設計マニュアル図8.10~12)

tan = Hb / V

Hb: 照査面に作用する合力の水平成分

2) 照査結果

照査は根入れ先端でのみ行う。

照査箇所名	照 査 面	照査面の	極限支持力	V- 2.Df.Be	安全率
	G.L.(m)	深さd	Qu(kN/m)	(kN/m)	F
根入れ先端	-10.000	10.000	16033.99	1152.00	13.92 1.00

(2) 照査面(根入れ先端: G.L.-10.000m)

1)照査結果

	項目	記号	数 値
鉛直成分	壁体内土重量(上載荷重含む) 現地盤から照査面までの距離 現地盤から照査面までの平均土単位重量 偏心を考慮した基礎の有効載荷幅	V Df 2 Be	1792.00 10.000 8.00 8.000
л	鉛直成分集計値 V - 2.Df.Be (kN/m)		1152.00
Qu	照査面に作用するモーメント 照査面に作用する合力の水平成分 偏心距離 作用力の傾き(Hb/V) 照査面直下の内部摩擦角 照査面直下の粘着力 照査面直下の土の単位重量	Mb Hb e tan c	0.00 0.00 0.000 0.000 30.00 0.00 10.00
	支持力係数 支持力係数 支持力係数	Nc Nq N	30.140 18.401 15.304
	地盤の極限支持力 Qu (kN/m)		16033.99
安全率	3		13.92 1.00

2) 照査面での外力の集計

外力の内訳	モーメント Mb(kN.m/m)	水平力 Hb(kN/m)
水圧 Mw(Fw) 主働土圧 Ma(Fa) 受働土圧 - Mp(Fp) その他荷重 Mc(Fc) 慣性力 Me(Fe) 動水圧 Mwd(Fwd)	0.00 276.07 3533.66 0.00 2046.13 0.00	0.00 130.15 998.01 0.00 181.20 0.00
外力の集計	0.00	0.00

a.水圧

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の水圧モーメント表参照。

b.主働土圧

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の主働土圧モーメント表参照。

c.受働土圧

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の受働土圧モーメント表参照。

d.その他荷重

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時のその他荷重モーメント表参照。

e. 慣性力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の慣性力モーメント表参照。

f.動水圧力

「せん断変形破壊の検討結果」の照査面が「根入れ先端」の時の動水圧モーメント計算参照。

3)壁体内土重量(Ⅴ)

「滑動に対する検討結果」の「滑動抵抗力の総和」中の「b.壁体内土重量」参照。

$$V = 1792.00(kN/m)$$

4)偏心距離 (e)の算定

$$e = Mb / V$$

$$= 0.000(m)$$

$$= 8.000 - 2.0 \times 0.000$$

$$= 8.000(m)$$

5)作用力の傾きの算定

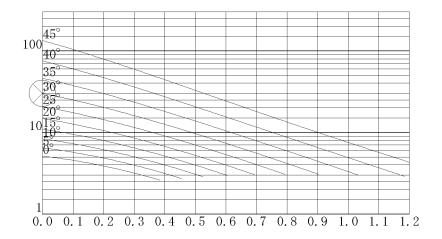
$$tan = Hb / V$$

$$= 0.000$$

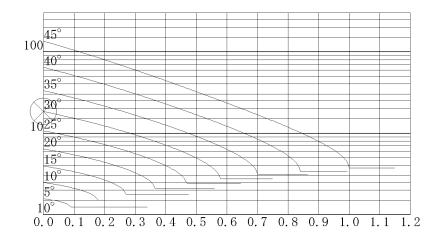
6) 2の算定

現地盤から照査面までの区間 (Df) の土の平均単位体積重量。ただし、水以下は水中重量。 計算の都合上、堤体区間の地層データを用いるものとする。

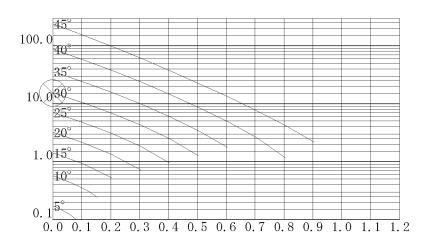
$$\gamma 2 = \frac{\sum \gamma \text{ ihi}}{\sum \text{hi}}$$


 $= 8.00(kN/m^3)$

No	層 上 面 標 高 G.L.(m)	層 下 面 標 高 G.L.(m)	層 厚 hi (m)	土 の 単位重量 (kN/m³)	土 の 有効重量 i・hi (kN/m²)
1 2	0.000 -5.000	-5.000 -10.000	5.000 5.000	6.0 10.0	30.00 50.00
			10.000		80.00


(3)支持力係数算定図

作用力の傾き (Mb / Hb) tan = 0.000 照査面直下の内部摩擦角 = 30.00 支持力係数 Nc = 30.140 支持力係数 Nq = 18.401 支持力係数 N = 15.304


1)Nc算定図

2)Nq算定図

3)N 算定図

3.3 堤内側矢板

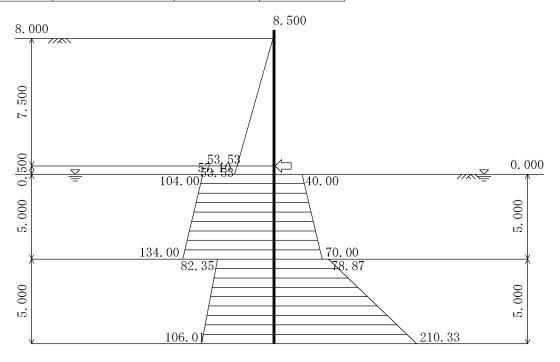
3.3.1 根入れ長の計算

(1)結果要旨

使用鋼材名 : VL型

決定全長 : 18.500(m) 引張材位置 G.L. : 0.500(m) 引張材よる上の外力:無視する 受働側の無効層厚 : 0.000(m) R.W.L : 0.000(m) L.W.L : 0.000(m)

照査は、引張材取付位置回りの主働側(Ma+Mw)と受働側モーメント(Mp)が、下式を満足するように根入れ長を検討する。


$$F_S = \frac{Mp}{Ma + Mw + Mc} \ge F_{SA}$$

ここに、

Fsa:必要安全率(砂質地盤:1.20)

Mp : 受働土圧による引張材位置のモーメント Ma : 主働土圧による引張材位置のモーメント Mw : 水圧による引張材位置のモーメント

Į	Į.		目	必要根入れ長	決定根入れ長
根入れ先端位置 G.L.(m)				-9.840	-10.000
主	働	側	Ma + Mw+Mc(kN.m/m)	5494.86	5670.97
受	働	側	Mp(kN.m/m)	6598.29	6945.45
安	全	率	Mp/(Ma+Mw+Mc)	1.201 1.20	1.225 1.20

(2)外力集計表

1)主働土圧モーメント表

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pa kN/m²	水平力 Pa kN/m	アーム長 y m	モーメント Ma kN.m/m
1	0.500 0.000	0.500	53.53 57.10	27.66	0.253	6.99
2	0.000 -5.000	5.000	104.00 134.00	595.00	3.105	1847.50
3	-5.000 -10.000	5.000	82.35 106.01	470.90	8.105	3816.48
				1093.56		5670.97

2)水圧モーメント表

 $Pw = 0.00kN/m \qquad Mw = 0.00kN.m/m$

3)受働土圧モーメント表

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	0.000 -5.000	5.000	40.00 70.00	275.00	3.227	887.50
2	-5.000 -10.000	5.000	78.87 210.33	723.01	8.379	6057.95
				998.01		6945.45

4)その他荷重モーメント表

Pc = 0.00kN/m

Mc = 0.00kN.m/m

3.3.2 壁体断面力の計算

(1)結果要旨

1)解析結果

矢板曲げモーメント、引張材反力は、弾塑性法により算定する。解析結果は以下の通りである。

解析項目		解析結果	発生位置
最大曲げモーメント	Mmax(kN.m/m)	297.44	G.L. 0.500
最大せん断力	Smax(kN/m)	-248.25	G.L. 0.500
上段引張材反力	R1(kN/m)	-29.19	G.L. 7.500
下段引張材反力	R2(kN/m)	-425.20	G.L. 0.500

ここでは、弾塑性解析に使用する有効側圧分布表を示す。

2)荷重条件

弾塑性解析に用いる有効側圧は、主働土圧 + 水圧、受働土圧から静止土圧分を事前に差く。 なお、粘性土においても土圧と水圧は砂質土と同様に、別々に矢板に作用するものとする。主働土圧、 水圧、受働土圧強度、静止土圧強度は「矢板計算時の土圧・水圧強度表」を参照。

	深さ	背 頙	面側	掘り	间 側	有 効	有 効
No	GL(m)	主働土圧 kN/m²	水 kN/m²	受働土圧 kN/m²	静止土圧 kN/m²	主働側圧 kN/m²	受働側圧 kN/m²
1	8.500 8.000	0.00 0.00	0.00 0.00			0.00 0.00	
2	8.000 0.500	0.00 53.53	0.00 0.00			0.00 53.53	
3	0.500 0.000	53.53 57.10	0.00 0.00			53.53 57.10	
4	0.000 -5.000	104.00 134.00	0.00 0.00	40.00 70.00	0.00 15.00	104.00 119.00	40.00 55.00
5	-5.000 -10.000	82.35 106.01	0.00 0.00	78.87 210.33	15.00 40.00	67.35 66.01	63.87 170.33

は無効層で解析上の土圧強度は0扱いとする。

その他荷重

3)地盤バネ条件

受働バネは次式より求める。

kH=
$$\eta$$
 · $\frac{1}{0.3}$ α Eo · $(\frac{BH}{0.3})^{-3/4}$

ここに、

:壁体形式に関わる係数。連続した壁体につき = 1.0

BH:換算載荷幅(10.0m)

No	上 面	下 面	層 厚	变形係数	地盤バネ
	標 高	標 高	h	Eo	kH
	G.L.(m)	G.L.(m)	m	kN/m²	kN/m²
1 2	0.000	-5.000	5.000	42000	20184
	-5.000	-15.000	10.000	42000	20184

は無効層で解析上のバネ強度は0扱いとする。

4) 引張材バネ内部計算一覧

・引張材バネ定数の算式

$$K_S = \frac{\alpha \times (2 \times \Delta \times A \times E)}{(L \times S)}$$

ここに、

: 切ばりのゆるみを表す係数[1.0]

L:引張材設置長(堤体幅) [8.000]m

s : 引張材水平間隔 A : 引張材断面積

・計算一覧

引張材 番 号	本数 n 本	直 径 mm	断 面 積 A m²	ヤング係数 E kN/m²	水平間隔 s (m)	バネ定数 Ks (kN/m/m)
1 2	1	25 85	0.000491 0.005675	210000000.0 210000000.0	2.000 2.000	12885 148956

は直接バネ値入力。

5)解析用壁体断面諸量

断 面 積 A m²	断 面 2 次 モーメント I	ヤング係数 E kN/m²
0.026760	0.00028350	210000000.0

(2)解析結果(収束時の構造荷重条件)

1)状態の説明

・掘削面上

壁体本体区間(中詰土)を指す。背面側から主働側圧を考慮。地盤バネは存在しない。

· 受働弾性

根入れ区間で、掘削側への変位が極限変位以内の状態。

背面側からは有効主働側圧載荷を考慮。地盤バネ有り、掘削側荷重無し。

・受働塑性

根入れ区間で、掘削側への変位が極限変位を超えた状態を指す。

背面側からは有効主動側圧載荷を考慮。地盤バネ無し、掘削側荷重有り。

主働弾性

根入れ区間で、背面側へ変位が生じた状態。解析の仮定には無い状態。便宜上、受働弾性扱い。

2)荷重条件表

格点	Y座標		背	面側荷重強	度	掘	削側荷重強	度	地 盤
和 No	GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
1	8.500	掘削面上	0.00	0.00	0.00				
2	8.300	掘削面上	0.00	0.00	0.00				
3	8.100	掘削面上	0.00	0.00	0.00				
4	8.000	掘削面上	0.00	0.00	0.01				
5	7.900	掘削面上	0.71	0.71	0.13				
6	7.700	掘削面上	2.14	2.14	0.43				
7	7.500	引張材	3.57	3.57	0.71				12885
8	7.300	掘削面上	5.00	5.00	1.00				
9	7.100	掘削面上	6.42	6.42	1.28				
10	6.900	掘削面上	7.85	7.85	1.57				
11	6.700	掘削面上	9.28	9.28	1.86				
12	6.500	掘削面上	10.71	10.71	2.14				
13	6.300	掘削面上	12.13	12.13	2.43				
14	6.100	掘削面上	13.56	13.56	2.71				
15	5.900	掘削面上	14.99	14.99	3.00				
16	5.700	掘削面上	16.42	16.42	3.28				

+4 上	V 広 挿		背	面側荷重強		掘	削側荷重強	度	地 盤
格点 No	Y 座 標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
17	5.500	掘削面上	17.84	17.84	3.57				
18	5.300	掘削面上	19.27	19.27	3.85				
19	5.100	掘削面上	20.70	20.70	4.14				
20	4.900	掘削面上	22.13	22.13	4.43				
21	4.700	掘削面上	23.56	23.56	4.71				
22	4.500	掘削面上	24.98	24.98	5.00				
23	4.300	掘削面上	26.41	26.41	5.28				
24	4.100	掘削面上	27.84	27.84	5.57				
25	3.900	掘削面上	29.27	29.27	5.85				
26	3.700	掘削面上	30.69	30.69	6.14				
27	3.500	掘削面上	32.12	32.12	6.42				
28	3.300	掘削面上	33.55	33.55	6.71				
29	3.100	掘削面上	34.98	34.98	7.00				
30	2.900	掘削面上	36.40	36.40	7.28				
31	2.700	掘削面上	37.83	37.83	7.57				
32	2.500	掘削面上	39.26	39.26	7.85				
33	2.300	掘削面上	40.69	40.69	8.14				
34	2.100	掘削面上	42.11	42.11	8.42				
35	1.900	掘削面上	43.54	43.54	8.71				
36	1.700	掘削面上	44.97	44.97	8.99				
37	1.500	掘削面上	46.40	46.40	9.28				
38	1.300	掘削面上	47.82	47.82	9.56				
39	1.100	掘削面上	49.25	49.25	9.85				
40	0.900	掘削面上	50.68	50.68	10.14				
41	0.700	掘削面上	52.11	52.11	10.42				
42	0.500	引張材	53.53	53.53	10.71				148956
43	0.300	掘削面上	54.96	54.96	10.99				
44	0.100	掘削面上	56.39	56.39	8.43				
45	0.000	受働塑性	57.10	104.00	8.05	0.00	40.00	2.00	
46	-0.100	受働塑性	104.30	104.30	15.66	40.30	40.30	6.06	
47	-0.300	受働塑性	104.90	104.90	20.98	40.90	40.90	8.18	
48	-0.500	受働塑性	105.50	105.50	21.10	41.50	41.50	8.30	
49	-0.700	受働塑性	106.10	106.10	21.22	42.10	42.10	8.42	
50	-0.900	受働塑性	106.70	106.70	21.34	42.70	42.70	8.54	
51	-1.100	受働塑性	107.30	107.30	21.46	43.30	43.30	8.66	
52	-1.300	受働塑性	107.90	107.90	21.58	43.90	43.90	8.78	
53	-1.500	受働塑性	108.50	108.50	21.70	44.50	44.50	8.90	

+4 上	V 広 挿		背	面側荷重強		掘	削側荷重強		地 盤
格点 No	Y 座 標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
54	-1.700	受働塑性	109.10	109.10	21.82	45.10	45.10	9.02	
55	-1.900	受働塑性	109.70	109.70	21.94	45.70	45.70	9.14	
56	-2.100	受働塑性	110.30	110.30	22.06	46.30	46.30	9.26	
57	-2.300	受働塑性	110.90	110.90	22.18	46.90	46.90	9.38	
58	-2.500	受働塑性	111.50	111.50	22.30	47.50	47.50	9.50	
59	-2.700	受働塑性	112.10	112.10	22.42	48.10	48.10	9.62	
60	-2.900	受働塑性	112.70	112.70	22.54	48.70	48.70	9.74	
61	-3.100	受働塑性	113.30	113.30	22.66	49.30	49.30	9.86	
62	-3.300	受働塑性	113.90	113.90	22.78	49.90	49.90	9.98	
63	-3.500	受働塑性	114.50	114.50	22.90	50.50	50.50	10.10	
64	-3.700	受働塑性	115.10	115.10	23.02	51.10	51.10	10.22	
65	-3.900	受働塑性	115.70	115.70	23.14	51.70	51.70	10.34	
66	-4.100	受働塑性	116.30	116.30	23.26	52.30	52.30	10.46	
67	-4.300	受働塑性	116.90	116.90	23.38	52.90	52.90	10.58	
68	-4.500	受働塑性	117.50	117.50	23.50	53.50	53.50	10.70	
69	-4.700	受働塑性	118.10	118.10	23.62	54.10	54.10	10.82	
70	-4.900	受働塑性	118.70	118.70	17.79	54.70	54.70	8.19	
71	-5.000	受働塑性	119.00	67.35	9.31	55.00	63.87	5.97	
72	-5.100	受働塑性	67.32	67.32	10.10	66.00	66.00	9.98	
73	-5.300	受働塑性	67.27	67.27	13.45	70.26	70.26	14.05	
74	-5.500	受働塑性	67.21	67.21	13.44	74.52	74.52	14.90	
75	-5.700	受働塑性	67.16	67.16	13.43	78.78	78.78	15.76	
76	-5.900	受働塑性	67.11	67.11	13.42	83.04	83.04	16.61	
77	-6.100	受働塑性	67.05	67.05	13.41	87.29	87.29	17.46	
78	-6.300	受働塑性	67.00	67.00	13.40	91.55	91.55	18.31	
79	-6.500	受働塑性	66.95	66.95	13.39	95.81	95.81	19.16	
80	-6.700	受働塑性	66.89	66.89	13.38	100.07	100.07	20.01	
81	-6.900	受働塑性	66.84	66.84	13.37	104.33	104.33	20.87	
82	-7.100	受働塑性	66.79	66.79	13.36	108.59	108.59	21.72	
83	-7.300	受働塑性	66.73	66.73	13.35	112.84	112.84	22.57	
84	-7.500	受働塑性	66.68	66.68	13.34	117.10	117.10	23.42	
85	-7.700	受働塑性	66.63	66.63	13.33	121.36	121.36	24.27	
86	-7.900	受働塑性	66.57	66.57	13.31	125.62	125.62	25.12	
87	-8.100	受働塑性	66.52	66.52	13.30	129.88	129.88	25.98	
88	-8.300	受働塑性	66.47	66.47	13.29	134.14	134.14	26.83	
89	-8.500	受働弾性	66.41	66.41	13.28	138.39	138.39		4037
90	-8.700	受働弾性	66.36	66.36	13.27	142.65	142.65		4037

格点	Y座標		背	面側荷重強	度	掘削側荷重強度			地 盤
No No	GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
91	-8.900	受働弾性	66.31	66.31	13.26	146.91	146.91		4037
92	-9.100	受働弾性	66.25	66.25	13.25	151.17	151.17		4037
93	-9.300	受働弾性	66.20	66.20	13.24	155.43	155.43		4037
94	-9.500	受働弾性	66.14	66.14	13.23	159.68	159.68		4037
95	-9.700	受働弾性	66.09	66.09	13.22	163.94	163.94		4037
96	-9.900	主働弾性	66.04	66.04	9.91	168.20	168.20		3028
97	-10.000	主働弾性	66.01	0.00	3.30	170.33	0.00		1009
					1119.31			577.73	

状態の欄が「引張材」の時、地盤バネ強度は引張材バネ強度である。

(3)解析結果 (バネ値、変位、反力)

最大变位 xmax = 26.46mm (G.L. -3.900m)

取八叉口	Z Alliax -		+0111111 (U.L.	3.300111	,	
格点 No	Y 座 標 GL(m)	状 態	地 盤 バネ強度 kN/m	变 位 x mm	極限変位 xmax mm	地盤反力 Q kN/m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	8.500 8.300 8.100 8.000 7.900 7.700 7.500 7.300 6.700 6.500 6.300 6.100 5.900 5.700 5.500 5.300 5.100 4.900 4.700 4.500 4.300 3.700 3.500 3.300 2.900 2.700 2.500 2.100 1.500 1.500 1.500 1.500 0.500 0.300 0.300 0.300 0.300 0.300 0.300	掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘	12885	1.57 1.71 1.85 1.92 1.99 2.13 2.27 2.41 2.54 2.59 2.98 3.05 3.09 3.11 3.11 3.08 2.94 2.82 2.68 2.52 2.34 2.13 1.68 1.44 1.21 0.98 0.77 0.58 0.32 0.41 0.98 0.32 0.41 0.63 0.96 1.43 2.85 0.96 1.43 2.85 0.98 0.77	1.99	-29.19

		ı	I			1
格点 No	Y座標 GL(m)	 状 態	地 パネ強度 kN/m	变 位 X mm	極限変位 xmax mm	地盤反力 Q kN/m
48 49 51 52 53 55 56 66 66 66 67 68 69 70 71 72 73 74 75 76 77 78 79 79 79 79 79 79 79 79 79 79	-0.500 -0.700 -0.900 -1.100 -1.300 -1.500 -1.700 -1.900 -2.100 -2.300 -2.500 -2.700 -2.900 -3.100 -3.300 -3.500 -3.700 -4.100 -4.300 -4.500 -4.700 -4.900 -5.100 -5.300 -5.500 -5.700 -5.900 -6.100 -6.300 -6.500 -6.700 -6.900 -7.100 -7.300 -7.700 -7.900 -8.100 -7.300 -7.700 -7.900 -8.100 -9.900 -9.100 -9.300 -9.700 -9.900 -9.100 -9.900 -10.000	受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受	4037 4037 4037 4037 4037 4037 4037 4037	9.18 10.70 12.25 13.80 15.33 16.82 18.24 19.59 20.85 22.00 23.04 23.95 24.73 25.86 26.21 26.41 26.46 26.36 26.12 25.75 25.25 24.63 24.28 23.90 23.07 22.16 21.18 20.15 19.06 17.94 16.80 15.64 14.33 12.19 11.06 9.97 8.90 7.86 6.85 5.88 4.02 3.12 2.24 1.37 0.50 -0.36 -0.79	2.06 2.12 2.15 2.15 2.23 2.23 2.235 2.341 2.447 2.553 2.562 2.658 2.71 2.658 2.658 2.716 3.48 4.75 5.38 4.11 4.75 5.38 6.666 7.28 7.79 7.79 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31	
						311.00

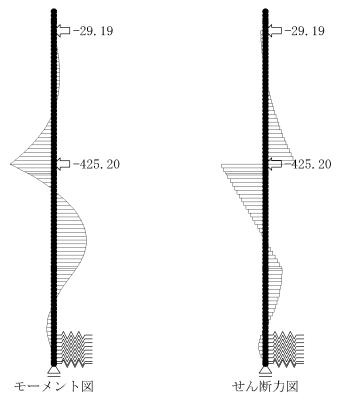
印は引張材反力で、その時の地盤バネ強度は引張材バネ強度である。

極限変位(xmax=有効受働土圧強度/地盤バネ強度)を超える変位(x)が生じた場合は塑性状態である。

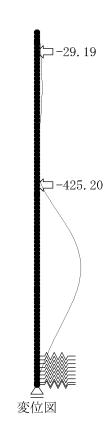
(4)解析結果(断面力)

最大曲げモーメントMmax = 297.44kN.m/m (G.L. 0.500m) 最大せん断力 Smax = -248.25kN/m (G.L. 0.500m) 最大変位 xmax = 26.46mm (G.L. -3.900m)

格点	Y座標	モーメント kN.m/m		せん断力	J kN/m	变位	地盤反力
No GL(m)		上面	下面	上面	下面	X mm	kN/m
1 2 3 4 5 6	8.500 8.300 8.100 8.000 7.900 7.700	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.14	0.00 0.00 0.00 0.01 0.14 0.57	1.57 1.71 1.85 1.92 1.99 2.13	


格点	Y座標	モーメント	~ kN.m/m	せん断力	J k N/m	变 位	地盤反力
No	GL(m)	上面	下面	上面	下面	X mm	Q kN/m
7	7.500	0.14	0.14	0.57	-27.91	2.27	-29.19
8 9	7.300 7.100	-5.44 -10.82	-5.44 -10.82	-27.91 -26.91	-26.91 -25.63	2.41 2.54	
10	6.900	-15.95	-15.95	-25.63	-24.06	2.67	
11	6.700	-20.76	-20.76	-24.06	-22.20 -20.06	2.79 2.89	
12 13	6.500 6.300	-25.20 -29.21	-25.20 -29.21	-22.20 -20.06	-20.06	2.09	
14	6.100	-32.73	-32.73	-17.63	-14.92	3.05	
15 16	5.900 5.700	-35.72 -38.10	-35.72 -38.10	-14.92 -11.92	-11.92 -8.64	3.09 3.11	
17	5.500	-39.83	-39.83	-8.64	-5.07	3.11	
18	5.300	-40.84	-40.84	-5.07	-1.21	3.08	
19 20	5.100 4.900	-41.09 -40.50	-41.09 -40.50	-1.21 2.93	2.93 7.35	3.02 2.94	
21	4.700	-39.03	-39.03	7.35	12.06	2.82	
22	4.500	-36.62	-36.62	12.06	17.06	2.68	
23 24	4.300 4.100	-33.21 -28.74	-33.21 -28.74	17.06 22.34	22.34 27.91	2.52 2.34	
25	3.900	-23.16	-23.16	27.91	33.76	2.13	
26	3.700	-16.40	-16.40	33.76	39.90	1.91	
27 28	3.500 3.300	-8.42 0.84	-8.42 0.84	39.90 46.32	46.32 53.03	1.68 1.44	
29	3.100	11.45	11.45	53.03	60.03	1.44	
30	2.900	23.45	23.45	60.03	67.31	0.98	
31 32	2.700 2.500	36.92 51.89	36.92 51.89	67.31 74.88	74.88 82.73	0.77 0.58	
33	2.300	68.44	68.44	82.73	90.87	0.43	
34	2.100	86.61	86.61	90.87	99.29	0.32	
35 36	1.900 1.700	106.47 128.07	106.47 128.07	99.29 108.00	108.00 116.99	0.28 0.30	
37	1.500	151.47	151.47	116.99	126.27	0.41	
38	1.300	176.72	176.72	126.27	135.84	0.63	
39 40	1.100 0.900	203.89 233.02	203.89 233.02	135.84 145.69	145.69 155.82	0.96 1.43	
41	0.700	264.19	264.19	155.82	166.24	2.05	
42	0.500 0.300	297.44 247.79	297.44 247.79	166.24	-248.25 -237.26	2.85 3.85	-425.20
43 44	0.300	247.79	247.79	-248.25 -237.26	-237.26	5.01	
45	0.000	177.45	177.45	-228.83	-222.78	5.64	
46 47	-0.100 -0.300	155.17 112.54	155.17 112.54	-222.78 -213.18	-213.18 -200.38	6.30 7.70	
48	-0.500	72.46	72.46	-200.38	-187.58	9.18	
49	-0.700	34.94	34.94	-187.58	-174.78	10.70	
50 51	-0.900 -1.100	-0.02 -32.41	-0.02 -32.41	-174.78 -161.98	-161.98 -149.18	12.25 13.80	
52	-1.300	-62.25	-62.25	-149.18	-136.38	15.33	
53	-1.500	-89.53	-89.53	-136.38	-123.58	16.82	
54 55	-1.700 -1.900	-114.24 -136.40	-114.24 -136.40	-123.58 -110.78	-110.78 -97.98	18.24 19.59	
56	-2.100	-156.00	-156.00	-97.98	-85.18	20.85	
57	-2.300	-173.03	-173.03	-85.18	-72.38	22.00	
58 59	-2.500 -2.700	-187.51 -199.43	-187.51 -199.43	-72.38 -59.58	-59.58 -46.78	23.04 23.95	
60	-2.900	-208.78	-208.78	-46.78	-33.98	24.73	
61 62	-3.100 -3.300	-215.58 -219.82	-215.58 -219.82	-33.98 -21.18	-21.18 -8.38	25.37 25.86	
63	-3.500	-219.62	-221.49	-8.38	4.42	26.21	
64	-3.700	-220.61	-220.61	4.42	17.22	26.41	
65 66	-3.900 -4.100	-217.17 -211.17	-217.17 -211.17	17.22 30.02	30.02 42.82	26.46 26.36	
67	-4.300	-202.60	-202.60	42.82	55.62	26.12	
68	-4.500	-191.48	-191.48	55.62	68.42	25.75	
69 70	-4.700 -4.900	-177.80 -161.55	-177.80 -161.55	68.42 81.22	81.22 90.82	25.25 24.63	
71	-5.000	-152.47	-152.47	90.82	94.16	24.28	
72	-5.100	-143.06	-143.06	94.16	94.28	23.90	
73 74	-5.300 -5.500	-124.20 -105.46	-124.20 -105.46	94.28 93.68	93.68 92.22	23.07 22.16	
75	-5.700	-87.02	-87.02	92.22	89.90	21.18	
76	-5.900	-69.04	-69.04	89.90	86.71	20.15	
77 78	-6.100 -6.300	-51.70 -35.17	-51.70 -35.17	86.71 82.66	82.66 77.75	19.06 17.94	
79	-6.500	-19.62	-19.62	77.75	71.98	16.80	
80 81	-6.700 -6.900	-5.22 7.85	-5.22 7.85	71.98 65.34	65.34 57.85	15.64 14.48	
O I	-0.300	1.00	7.00	05.54	57.00	14.40	

格点	Y座標	モーメント	~ kN.m/m	せん断力	J kN/m	变 位 X	地盤反力 Q
No	GL(m)	上面	下面	上面	下面	mm	kN/m
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	-7.100 -7.300 -7.500 -7.700 -7.900 -8.100 -8.300 -8.500 -8.700 -9.100 -9.300 -9.500 -9.700 -9.900 -10.000	19.42 29.32 37.37 43.41 47.25 48.74 47.69 43.93 38.08 30.90 23.13 15.49 8.69 3.43 0.41 0.00	19.42 29.32 37.37 43.41 47.25 48.74 47.69 43.93 38.08 30.90 23.13 15.49 8.69 3.43 0.41	57.85 49.49 40.26 30.18 19.23 7.42 -5.25 -18.78 -29.24 -35.90 -38.86 -38.21 -34.01 -26.30 -15.10 -4.10	49.49 40.26 30.18 19.23 7.42 -5.25 -18.78 -29.24 -35.90 -38.86 -38.21 -34.01 -26.30 -15.10 -4.10	13.33 12.19 11.06 9.97 8.90 7.86 6.85 5.88 4.94 4.02 3.12 2.24 1.37 0.50 -0.36	-23.74 -19.93 -16.22 -12.60 -9.04 -5.52 -2.02 1.09 0.80


印は引張材反力である。

(5)断面力図

最大曲げモーメントMmax = 297.44kN.m/m (G.L. 0.500m) 最大せん断力 Smax = -248.25kN/m (G.L. 0.500m) 最大変位 xmax = 26.46mm (G.L. -3.900m)

図中、矢印の数値は引張材反力(kN/m)である。

3.3.3 壁体応力度

(1)使用断面

断面種類:鋼矢板 使用鋼材:VL型 使用材質:SY295

断面諸	元	単 位	数	値
断面係数 同上 有効率	Z	$\times 10^3 (\text{mm}^3/\text{m})$		3150 0.600
断面積	Α	\times 10 2 (mm 2 /m)		267.60

(2)設計断面力

設計断面力は下表の通りとする。

状	態	モーメント M ×10°(N.mm/m)	軸 力 N × 10³(N/m)	せん断力 S ×10³(N/m)
Max	時	297.44	0.00	248.25

(3)曲げ応力度

$$\sigma = \frac{M}{\alpha \cdot Z} + \frac{N}{A} \leq \sigma \operatorname{sa}$$

状	態	応力度 N/mm²	許容応力度 sa N/mm²	判	定
Max	時	157	270		

(4)せん断応力度

$$au = \frac{S}{A} \leq au a$$

状	態	応力度 N/mm²	許容応力度 a N/mm²	判	定
Max	時	9	125		

3.3.4 引張材応力度

(1)上段引張材の検討

1)使用断面

使用径 : 25(mm) 使用材質 : 高張力鋼690 許容応力度 : 264(N/mm²) 引張材設置間隔L : 2.000(m) 引張材使用本数n : 1(本)

引張材断面積 A: 25°×(/4)(mm²)

2)張力の算定

 $P = R \times L$

引張材反力 R kN/m	引張材設置 間隔 L	引張材張力 P kN/本
29.19	2.000	58.39

3)応力度

$$\sigma = \frac{P \times 10^3}{n \times A} \le \sigma \, a$$

応力度 N/mm²	許容応力度 sa N/mm²	判	定
119	264		

(2)下段引張材の検討

1)使用断面

使用径 : 85(mm) 使用材質 : 高張力鋼690 許容応力度 : 264(N/mm²) 引張材設置間隔L : 2.000(m) 引張材使用本数n : 1(本)

引張材断面積 A: 85²×(/4)(mm²)

2)張力の算定

 $P = R \times L$

引張材反力	引張材設置	引張材張力
R	間隔 L	P
kN/m	m	kN/本
425.20	2.000	850.41

3)応力度

$$\sigma = \frac{P \times 10^3}{n \times A} \le \sigma \, a$$

応力度 N/mm²	許容応力度 sa N/mm²	判	定
150	264		

3.3.5 腹起し材応力度

(1)上段腹起し材の検討

1)使用断面

使用鋼材 : [125×65×6×8

使用材質 : SS400

許容応力度: 210(N/mm²) 設置間隔: 2.000(m)

2)モーメントの算定

$$M = \frac{P \times L}{10}$$

引張材張力 P kN/本	引張材設置 間隔 L	モーメント M kN.m/m
58.39	2.000	11.68

3)応力度

$$\sigma = \frac{M \times 10^8}{Z \times 10^3} \le \sigma \, a$$

Z:断面係数(= 67×2cm³)

2枚で1組扱いとし、登録鋼材の断面係数を2倍扱いとする。

応力度 N/mm²	許容応力度 sa N/mm²	判	定
87	210		

(2)下段腹起し材の検討

1)使用断面

使用鋼材 : [380×100×10.5×16

使用材質 : SS400

許容応力度: 210(N/mm²) 設置間隔: 2.000(m)

2)モーメントの算定

$$M = \frac{P \times L}{10}$$

引張材張力 P kN/本	引張材設置 間隔 L	モーメント M kN.m/m
850.41	2.000	170.08

3)応力度

$$\sigma = \frac{M \times 10^8}{Z \times 10^3} \le \sigma \, a$$

Z:断面係数(= 763×2cm³)

2枚で1組扱いとし、登録鋼材の断面係数を2倍扱いとする。

応力度 N/mm²	許容応力度 sa N/mm²	判	定
111	210		

3.3.6 4C> hの検討

(1)照査方法

内部摩擦角が0の一様な粘性土地盤の場合には、次式を満足しなければ根入れ長の照査(極限平衡法)を満たし得ないので、別途地盤改良などの対策が必要となる。ここでは、堤体区間の現地盤面で照査する。

4c> ihi ここに、

c : 現地盤面直下の地盤の粘着力(kN/m²)

i:引張材取り付け点から下の中詰土の各層の単位体積重量(kN/m³)

hi : 引張材取り付け点から下の中詰土の各層の層厚(m)

(2)計算結果一覧

照査面 : G.L. 0.000 (m) 照査面直下の粘着力: c = 20.0 (kN/m²)

残留水位 G.L.(m)	4 • c kN/m²	$h + q$ kN/m^2	判定
0.000	80.00	9.00	

(3) ihi

集計範囲は、引張材位置から現地盤面までとする。

No	層 上 面 標 高 G.L.(m)	層 下 面 標 高 G.L.(m)	層 厚 hi (m)	土 の 単位重量 (kN/m³)	土 の 有効重量 i・hi (kN/m²)
1	0.500	0.000	0.500	18.0	9.00
			0.500		9.00

3.4 堤外側矢板

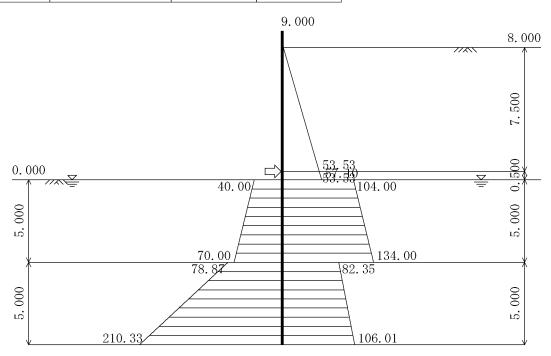
3.4.1 根入れ長の計算

(1)結果要旨

使用鋼材名 : VL型

決定全長 : 19.000(m) 引張材位置 G.L. : 0.500(m) 引張材よる上の外力 : 無視する 受働側の無効層厚 : 0.000(m) R.W.L : 0.000(m) L.W.L : 0.000(m)

照査は、引張材取付位置回りの主働側(Ma+Mw)と受働側モーメント(Mp)が、下式を満足するように根入れ長を検討する。


$$Fs = \frac{Mp}{Ma + Mw + Mc} \ge Fsa$$

ここに、

Fsa:必要安全率(砂質地盤:1.20)

Mp : 受働土圧による引張材位置のモーメント Ma : 主働土圧による引張材位置のモーメント Mw : 水圧による引張材位置のモーメント

項目				必要根入れ長 決定根入れ	
根入れ先端位置 G.L.(m)				-9.840	-10.000
主	働	側	Ma + Mw+Mc(kN.m/m)	5494.86	5670.97
受	働	側	Mp(kN.m/m)	6598.29	6945.45
安	全	率	Mp / (Ma + Mw+Mc)	1.201 1.20	1.225 1.20

(2)外力集計表

1)主働土圧モーメント表

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pa kN/m²	水平力 Pa kN/m	アーム長 y m	モーメント Ma kN.m/m
1	0.500 0.000	0.500	53.53 57.10	27.66	0.253	6.99
2	0.000 -5.000	5.000	104.00 134.00	595.00	3.105	1847.50
3	-5.000 -10.000	5.000	82.35 106.01	470.90	8.105	3816.48
				1093.56		5670.97

2)水圧モーメント表

 $Pw = 0.00kN/m \qquad Mw = 0.00kN.m/m$

3)受働土圧モーメント表

No	深 さ GL(m)	層 厚 h (m)	側圧強度 pp kN/m²	水平力 Pp kN/m	アーム長 y m	モーメント Mp kN.m/m
1	0.000 -5.000	5.000	40.00 70.00	275.00	3.227	887.50
2	-5.000 -10.000	5.000	78.87 210.33	723.01	8.379	6057.95
				998.01		6945.45

4)その他荷重モーメント表

Pc = 0.00kN/m

Mc = 0.00kN.m/m

3.4.2 壁体断面力の計算

(1)結果要旨

1)解析結果

矢板曲げモーメント、引張材反力は、弾塑性法により算定する。解析結果は以下の通りである。

解析項目		解析結果	発生位置
最大曲げモーメント	Mmax(kN.m/m)	-297.47	G.L. 0.500
最大せん断力	Smax(kN/m)	250.97	G.L. 0.500
上段引張材反力	R1(kN/m)	29.19	G.L. 7.500
下段引張材反力	R2(kN/m)	425.22	G.L. 0.500

ここでは、弾塑性解析に使用する有効側圧分布表を示す。

2)荷重条件

弾塑性解析に用いる有効側圧は、主働土圧 + 水圧、受働土圧から静止土圧分を事前に差く。 なお、粘性土においても土圧と水圧は砂質土と同様に、別々に矢板に作用するものとする。主働土圧、 水圧、受働土圧強度、静止土圧強度は「矢板計算時の土圧・水圧強度表」を参照。

	 深 さ	背面	可側	掘り	间 側	有 効	有 効
No	GL(m)	主働土圧 kN/m²	水 kN/m²	受働土圧 kN/m²	静止土圧 kN/m²	主働側圧 kN/m² 	受働側圧 kN/m²
1	9.000 8.000	0.00 0.00	0.00 0.00			0.00 0.00	
2	8.000 0.500	0.00 53.53	0.00 0.00			0.00 53.53	
3	0.500 0.000	53.53 57.10	0.00 0.00			53.53 57.10	
4	0.000 -5.000	104.00 134.00	0.00 0.00	40.00 70.00	0.00 15.00	104.00 119.00	40.00 55.00
5	-5.000 -10.000	82.35 106.01	0.00 0.00	78.87 210.33	15.00 40.00	67.35 66.01	63.87 170.33

は無効層で解析上の土圧強度は0扱いとする。

その他荷重

3)地盤バネ条件

受働バネは次式より求める。

kH=
$$\eta$$
 · $\frac{1}{0.3}$ α Eo · $(\frac{BH}{0.3})^{-3/4}$

ここに、

:壁体形式に関わる係数。連続した壁体につき = 1.0

BH: 換算載荷幅(10.0m)

No	上 面標 高 G.L.(m)	下 面標 高 G.L.(m)	層 厚 h m	变形係数 Eo kN/m²	地盤バネ kH kN/m²
1	0.000 -5.000	-5.000 -15.000	5.000 10.000	42000 42000	20184 20184

は無効層で解析上のバネ強度は0扱いとする。

4) 引張材バネ内部計算一覧

・引張材バネ定数の算式

$$K_{S} = \frac{\alpha \times (2 \times \Delta \times A \times E)}{(L \times S)}$$

ここに、

: 切ばりのゆるみを表す係数[1.0]

L:引張材設置長(堤体幅) [8.000]m

s : 引張材水平間隔 A : 引張材断面積

・計算一覧

引張材 番 号	本数 n 本	直 径 mm	断 面 積 A m²	ヤング係数 E kN/m²	水平間隔 s (m)	バネ定数 Ks (kN/m/m)
1 2	1	25 85	0.000491 0.005675	210000000.0 210000000.0	2.000 2.000	12885 148956

は直接バネ値入力。

5)解析用壁体断面諸量

断 面 積 A m²	断 面 2 次 モーメント I	ヤング係数 E kN/m²
0.026760	0.00028350	210000000.0

(2)解析結果(収束時の構造荷重条件)

1)状態の説明

・掘削面上

壁体本体区間(中詰土)を指す。背面側から主働側圧を考慮。地盤バネは存在しない。

・受働弾性

根入れ区間で、掘削側への変位が極限変位以内の状態。

背面側からは有効主働側圧載荷を考慮。地盤バネ有り、掘削側荷重無し。

・受働塑性

根入れ区間で、掘削側への変位が極限変位を超えた状態を指す。

背面側からは有効主動側圧載荷を考慮。地盤バネ無し、掘削側荷重有り。

主働弾性

根入れ区間で、背面側へ変位が生じた状態。解析の仮定には無い状態。便宜上、受働弾性扱い。

2)荷重条件表

格点	V 麻 擂		背	面側荷重強	度	掘	削側荷重強	度	地 盤
Mo No	Y座標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
1	9.000	掘削面上	0.00	0.00	0.00				
2	8.800	掘削面上	0.00	0.00	0.00				
3	8.600	掘削面上	0.00	0.00	0.00				
4	8.400	掘削面上	0.00	0.00	0.00				
5	8.200	掘削面上	0.00	0.00	0.00				
6	8.000	掘削面上	0.00	0.00	0.04				
7	7.800	掘削面上	1.43	1.43	0.29				
8	7.600	掘削面上	2.86	2.86	0.40				
9	7.500	引張材	3.57	3.57	0.36				12885
10	7.400	掘削面上	4.28	4.28	0.67				
11	7.200	掘削面上	5.71	5.71	1.14				
12	7.000	掘削面上	7.14	7.14	1.43				
13	6.800	掘削面上	8.57	8.57	1.71				
14	6.600	掘削面上	9.99	9.99	2.00				
15	6.400	掘削面上	11.42	11.42	2.28				
16	6.200	掘削面上	12.85	12.85	2.57				

+4 上	V 広 挿		背	面側荷重強		掘	削側荷重強	度	地 盤
格点 No	Y 座 標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
17	6.000	掘削面上	14.28	14.28	2.86				
18	5.800	掘削面上	15.70	15.70	3.14				
19	5.600	掘削面上	17.13	17.13	3.43				
20	5.400	掘削面上	18.56	18.56	3.71				
21	5.200	掘削面上	19.99	19.99	4.00				
22	5.000	掘削面上	21.41	21.41	4.28				
23	4.800	掘削面上	22.84	22.84	4.57				
24	4.600	掘削面上	24.27	24.27	4.85				
25	4.400	掘削面上	25.70	25.70	5.14				
26	4.200	掘削面上	27.12	27.12	5.42				
27	4.000	掘削面上	28.55	28.55	5.71				
28	3.800	掘削面上	29.98	29.98	6.00				
29	3.600	掘削面上	31.41	31.41	6.28				
30	3.400	掘削面上	32.83	32.83	6.57				
31	3.200	掘削面上	34.26	34.26	6.85				
32	3.000	掘削面上	35.69	35.69	7.14				
33	2.800	掘削面上	37.12	37.12	7.42				
34	2.600	掘削面上	38.55	38.55	7.71				
35	2.400	掘削面上	39.97	39.97	7.99				
36	2.200	掘削面上	41.40	41.40	8.28				
37	2.000	掘削面上	42.83	42.83	8.57				
38	1.800	掘削面上	44.26	44.26	8.85				
39	1.600	掘削面上	45.68	45.68	9.14				
40	1.400	掘削面上	47.11	47.11	9.42				
41	1.200	掘削面上	48.54	48.54	9.71				
42	1.000	掘削面上	49.97	49.97	9.99				
43	0.800	掘削面上	51.39	51.39	10.28				
44	0.600	掘削面上	52.82	52.82	7.90				
45	0.500	引張材	53.53	53.53	5.35				148956
46	0.400	掘削面上	54.25	54.25	8.16				
47	0.200	掘削面上	55.68	55.68	11.14				
48	0.000	受働塑性	57.10	104.00	16.09	0.00	40.00	4.02	
49	-0.200	受働塑性	104.60	104.60	20.92	40.60	40.60	8.12	
50	-0.400	受働塑性	105.20	105.20	21.04	41.20	41.20	8.24	
51	-0.600	受働塑性	105.80	105.80	21.16	41.80	41.80	8.36	
52	-0.800	受働塑性	106.40	106.40	21.28	42.40	42.40	8.48	
53	-1.000	受働塑性	107.00	107.00	21.40	43.00	43.00	8.60	

+4 上	V 広 挿		背	面側荷重強	 度	掘	削側荷重強	 度	地 盤
格点 No	Y 座 標 GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
54	-1.200	受働塑性	107.60	107.60	21.52	43.60	43.60	8.72	
55	-1.400	受働塑性	108.20	108.20	21.64	44.20	44.20	8.84	
56	-1.600	受働塑性	108.80	108.80	21.76	44.80	44.80	8.96	
57	-1.800	受働塑性	109.40	109.40	21.88	45.40	45.40	9.08	
58	-2.000	受働塑性	110.00	110.00	22.00	46.00	46.00	9.20	
59	-2.200	受働塑性	110.60	110.60	22.12	46.60	46.60	9.32	
60	-2.400	受働塑性	111.20	111.20	22.24	47.20	47.20	9.44	
61	-2.600	受働塑性	111.80	111.80	22.36	47.80	47.80	9.56	
62	-2.800	受働塑性	112.40	112.40	22.48	48.40	48.40	9.68	
63	-3.000	受働塑性	113.00	113.00	22.60	49.00	49.00	9.80	
64	-3.200	受働塑性	113.60	113.60	22.72	49.60	49.60	9.92	
65	-3.400	受働塑性	114.20	114.20	22.84	50.20	50.20	10.04	
66	-3.600	受働塑性	114.80	114.80	22.96	50.80	50.80	10.16	
67	-3.800	受働塑性	115.40	115.40	23.08	51.40	51.40	10.28	
68	-4.000	受働塑性	116.00	116.00	23.20	52.00	52.00	10.40	
69	-4.200	受働塑性	116.60	116.60	23.32	52.60	52.60	10.52	
70	-4.400	受働塑性	117.20	117.20	23.44	53.20	53.20	10.64	
71	-4.600	受働塑性	117.80	117.80	23.56	53.80	53.80	10.76	
72	-4.800	受働塑性	118.40	118.40	23.68	54.40	54.40	10.88	
73	-5.000	受働塑性	119.00	67.35	18.62	55.00	63.87	11.98	
74	-5.200	受働塑性	67.29	67.29	13.46	68.13	68.13	13.63	
75	-5.400	受働塑性	67.24	67.24	13.45	72.39	72.39	14.48	
76	-5.600	受働塑性	67.19	67.19	13.44	76.65	76.65	15.33	
77	-5.800	受働塑性	67.13	67.13	13.43	80.91	80.91	16.18	
78	-6.000	受働塑性	67.08	67.08	13.42	85.17	85.17	17.03	
79	-6.200	受働塑性	67.03	67.03	13.41	89.42	89.42	17.88	
80	-6.400	受働塑性	66.97	66.97	13.39	93.68	93.68	18.74	
81	-6.600	受働塑性	66.92	66.92	13.38	97.94	97.94	19.59	
82	-6.800	受働塑性	66.87	66.87	13.37	102.20	102.20	20.44	
83	-7.000	受働塑性	66.81	66.81	13.36	106.46	106.46	21.29	
84	-7.200	受働塑性	66.76	66.76	13.35	110.71	110.71	22.14	
85	-7.400	受働塑性	66.71	66.71	13.34	114.97	114.97	22.99	
86	-7.600	受働塑性	66.65	66.65	13.33	119.23	119.23	23.85	
87	-7.800	受働塑性	66.60	66.60	13.32	123.49	123.49	24.70	
88	-8.000	受働塑性	66.55	66.55	13.31	127.75	127.75	25.55	
89	-8.200	受働塑性	66.49	66.49	13.30	132.01	132.01	26.40	
90	-8.400	受働弾性	66.44	66.44	13.29	136.26	136.26		4037

格点	Y座標		背	面側荷重強	度	掘	削側荷重強	度	地 盤
No No	GL(m)	状 態	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	格点直上 kN/m²	格点直下 kN/m²	集中荷重 kN/m²	バネ強度 kN/m
91	-8.600	受働弾性	66.39	66.39	13.28	140.52	140.52		4037
92	-8.800	受働弾性	66.33	66.33	13.27	144.78	144.78		4037
93	-9.000	受働弾性	66.28	66.28	13.26	149.04	149.04		4037
94	-9.200	受働弾性	66.23	66.23	13.25	153.30	153.30		4037
95	-9.400	受働弾性	66.17	66.17	13.23	157.56	157.56		4037
96	-9.600	受働弾性	66.12	66.12	13.22	161.81	161.81		4037
97	-9.800	受働弾性	66.06	66.06	13.21	166.07	166.07		4037
98	-10.000	主働弾性	66.01	0.00	6.60	170.33	0.00		2018
					1119.31			564.21	

状態の欄が「引張材」の時、地盤バネ強度は引張材バネ強度である。

(3)解析結果(バネ値、変位、反力)

最大変位 xmax = -26.46mm (G.L. -3.800m)

取八叉	M Villay -	_0.	40111111 (U.L.	3.000111	,	
格点 No	Y座標 GL(m)	状 態	地 盤 バネ強度 kN/m	变 位 X mm	極限変位 xmax mm	地盤反力 Q kN/m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	9.000 8.800 8.600 8.400 8.200 7.800 7.600 7.500 7.400 7.000 6.800 6.600 6.400 6.200 6.000 5.800 5.600 5.400 4.200 4.000 3.800 4.200 4.200 2.000 1.800 2.400 2.200 2.400 2.200 1.800 1.600 1.200 0.800 0.500	掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘掘	12885	-1.22 -1.36 -1.50 -1.64 -1.78 -1.92 -2.06 -2.20 -2.27 -2.34 -2.47 -2.61 -2.73 -2.84 -2.94 -3.01 -3.10 -3.10 -3.10 -3.11 -3.10 -3.2.88 -2.76 -2.60 -2.43 -2.23 -2.88 -2.76 -1.56 -1.32 -1.99 -0.87 -0.67 -0.50 -0.37 -0.50 -0.37 -0.28 -0.34 -0.50 -0.77 -1.72 -1.72 -2.85		29.19
	0.000	3,44133 144 1	1.0000			120.22

格点 No	Y座標 GL(m)	状 態	地 盤 バネ強度 kN/m	变 位 x mm	極限変位 xmax mm	地盤反力 Q kN/m
46 47 48 49 50 51 52 53 54 55 66 66 67 68 69 71 72 73 74 75 80 81 82 83 88 89 90 91 92 93 94 95 96 97 98 98 98 98 98 98 98 98 98 98 98 98 98	0.400 0.200 0.200 0.000 -0.200 -0.400 -0.600 -1.000 -1.200 -1.400 -1.600 -1.800 -2.200 -2.400 -2.600 -2.800 -3.200 -3.400 -3.600 -3.800 -4.200 -4.200 -4.600 -4.800 -5.200 -5.400 -5.600 -5.800 -6.600 -6.600 -7.000 -7.400 -7.400 -7.400 -7.800 -8.800 -8.800 -9.200 -9.400 -9.600 -9.800 -10.000	掘掘受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受受	4037 4037 4037 4037 4037 4037 4037 4037	-3.33 -4.41 -5.64 -6.99 -8.44 -9.94 -11.48 -13.03 -14.57 -16.08 -17.54 -21.44 -22.54 -23.52 -24.36 -25.64 -26.43 -26.27 -25.96 -25.96 -24.28 -23.51 -22.64 -21.69 -20.68 -19.62 -17.38 -10.23 -	1.99 2.01 2.04 2.07 2.13 2.16 2.22 2.25 2.28 2.31 2.34 2.46 2.49 2.52 2.55 2.61 2.64 2.70 2.97 3.38 3.59 3.80 4.01 4.22 4.43 4.64 4.85 5.70 5.71 6.12 6.75 6.12 6.75 6.75 7.38 8.23 8.39	25.72 21.85 18.09 14.42 10.83 7.29 3.78 0.29 -1.60
		•			•	

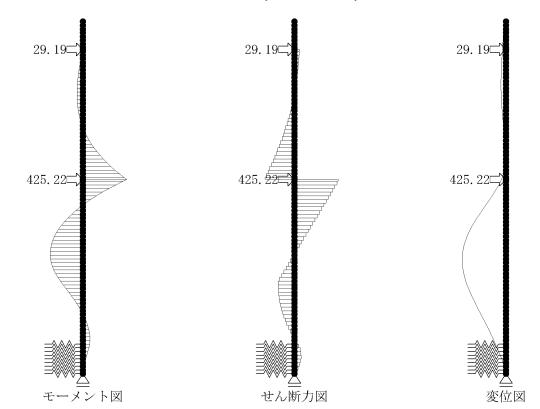
印は引張材反力で、その時の地盤バネ強度は引張材バネ強度である。

極限変位(xmax=有効受働土圧強度/地盤バネ強度)を超える変位(x)が生じた場合は塑性状態である。

(4)解析結果(断面力)

最大曲げモーメントMmax = -297.47kN.m/m (G.L. 0.500m) 最大せん断力 Smax = 250.97kN/m (G.L. 0.500m) 最大変位 xmax = -26.46mm (G.L. -3.800m)

格点	Y座標	モーメント kN.m/m					地盤反力
No	GL(m)	上面	下面	上面	下面	X mm	kN/m
1 2 3	9.000 8.800 8.600	0.00	0.00 0.00 0.00	0.00	0.00 0.00 0.00	-1.22 -1.36 -1.50	


No	格点	Y座標	モーメント	~ kN.m/m	せん断力	J kN/m	变 位	地盤反力
5 8,200 0.00 0.00 0.00 0.00 0.00 1.78		GL(m)	上面	下面	上面	下面		kN/m
6 8 8.000								
8 7.600 -0.01 -0.01 -0.01 -0.04 -0.32 -0.32 -0.60 9 7.500 -0.14 -0.14 -0.17 -0.32 -0.72 -2.20 9 7.500 -0.14 -0.14 -0.17 -0.72 -2.20 -0.11 11 7.200 8.16 8.16 27.44 26.30 -2.47 -2.51 11 7.200 8.16 8.16 27.44 26.30 -2.47 -2.51 11 7.200 8.16 8.16 27.44 26.30 -2.47 -2.51 11 7.200 8.16 8.16 27.44 26.30 -2.47 -2.51 13 6.800 18.39 18.39 24.87 -2.61 -2.73 -14 6.800 18.39 18.39 24.87 23.16 22.66 -2.73 -15 6.800 18.39 18.39 24.87 23.16 23.16 2.73 -16 6.800 18.39 18.39 24.87 23.16 82.84 -2.84 -16 6.800 37.22 20.22 20.16 82.16 82.84 2.84 -17 6.000 33.43 33 31.03 88.88 81.88 81 8.83 1.83 2.84 -18 5.800 36.98 36.98 13.45 10.31 -3.30 71 -18 5.800 36.98 36.98 13.45 10.31 -3.30 71 -18 5.800 36.98 36.98 13.45 10.31 -3.30 71 -20 5.400 40.42 40.42 6.88 3.17 -3.10 -20 5.400 40.42 40.42 6.88 3.17 -2.28 -21 5.000 40.89 40.89 -0.82 -5.11 -2.98 -22 5.000 40.89 40.89 -0.82 -5.11 -2.98 -23 4.800 37.93 37.93 37.93 -9.68 -14.53 -2.76 -24 4.600 37.93 37.93 37.93 -9.68 -14.53 -2.76 -25 8.80 38.80 19.9 19.91 -19.67 -25.09 -2.43 -26 4.200 31.09 31.09 -19.67 -25.09 -2.43 -27 4.000 26.07 26.07 26.07 -19.67 -25.09 -2.43 -28 3.800 19.9 19.91 19.91 3.80 84 49.85 -14.65 -1.32 -28 3.800 19.99 -5.99 -49.65 -56.50 -1.32 -28 3.800 19.99 -5.99 -49.65 -56.50 -1.32 -28 3.800 -30.02 -8.99 -5.99 -49.65 -56.50 -1.32 -28 3.800 -30.02 -8.99 -5.99 -49.65 -56.50 -0.37 -37 2.000 -96.35 -96.35 -96.35 -95.05 -103.61 -0.29 -30 3.300 -1.77 44 -2.73 -11.06 -78.877 -0.50 -28 3.400 -59.99 -59.99 -78.77 -86.77 -0.50 -77 4.77 4.77 4.88 -17.79 4.80 -77.00 -77.40 -42 1.000 -26.05 -77.40 -77.34 -77.40 -	5			0.00				
9 7.500		7.800		-0.01	-0.04			
10		7.600						00.40
11		7.500 7.400						29.19
13	11	7.200	8.16	8.16	27.44	26.30	-2.47	
14		7.000		13.42	26.30			
16 6 200 31 03 31 03 18 88 16 31 3 45 3 30 7 18 5 800 36 98 36 98 13 45 10 31 3 3 10 3 18 18 16 31 3 3 45 3 3 10 3 18 3 3 4 3 3 4 3 3 4 3 3				23.02	23.16			
17		6.400	27.25		21.16	18.88		
18		6.200		31.03	16.88	10.31		
20	18	5.800	36.98	36.98	13.45	10.31	-3.10	
21					10.31	6.88		
22	21	5.200	41.05		3.17	-0.82	-3.10	
24				40.89	-0.82			
25				39.87 37.93				
27	25	4.400	35.03	35.03	-14.53	-19.67	-2.60	
28					-19.67			
29								
31	29	3.600	12.55	12.55	-36.80	-43.08	-1.80	
32 3.000					-43.08 -49.65	-49.65 -56.50		
34	32	3.000	-17.29	-17.29	-56.50	-63.64	-1.09	
35	33			-30.02	-63.64	-71.06		
36	34							
38	36	2.200	-77.34	-77.34	-86.77	-95.05	-0.37	
39	37	2.000		-96.35 -117.07	-95.05 -103.61	-103.61		
41		1.600	-139.57	-139.57	-112.46	-121.60		
42		1.400		-163.89				
43		1.200						
45	43	0.800	-248.38	-248.38	-150.72	-161.00	-1.72	
46		0.600	-280.58 -297 <i>4</i> 7	-280.58 -297.47	-161.00 -168.90	-168.90 250.97	-2.43	425 22
48 0.000 -177.48 -177.48 231.67 219.60 -5.64 49 -0.200 -133.56 -133.56 219.60 206.80 -6.99 50 -0.400 -92.20 206.80 194.00 -8.44 51 -0.600 -53.40 -53.40 194.00 181.20 -9.94 52 -0.800 -17.16 -17.16 181.20 168.40 -11.48 53 -1.000 16.52 16.52 168.40 155.60 -13.03 54 -1.200 47.64 47.64 155.60 142.80 -14.57 55 -1.400 76.20 76.20 142.80 130.00 -16.08 56 -1.600 102.20 102.20 130.00 117.20 -17.54 57 -1.800 125.64 125.64 117.20 104.40 -18.93 58 -2.200 164.84 164.84 91.60 78.80 -21.44 60 -2.400 <td< td=""><td></td><td>0.400</td><td>-272.37</td><td>-272.37</td><td>250.97</td><td>242.81</td><td></td><td></td></td<>		0.400	-272.37	-272.37	250.97	242.81		
49 -0.200 -133.56 -133.56 219.60 206.80 -6.99 50 -0.400 -92.20 -92.20 206.80 194.00 -8.44 51 -0.600 -53.40 -53.40 194.00 181.20 -9.94 52 -0.800 -17.16 181.20 168.40 -11.48 53 -1.000 16.52 16.52 168.40 155.60 -13.03 54 -1.200 47.64 47.64 155.60 142.80 -14.57 55 -1.400 76.20 76.20 142.80 130.00 -16.08 56 -1.600 102.20 102.20 130.00 117.20 -17.54 57 -1.800 125.64 125.64 117.20 104.40 -18.93 58 -2.000 164.84 164.52 104.40 91.60 -20.24 59 -2.200 180.60 180.60 78.80 66.00 -22.54 61 -2.600	1 1				242.81			
50 -0.400 -92.20 -92.20 206.80 194.00 -8.44 51 -0.600 -53.40 -53.40 194.00 181.20 -9.94 52 -0.800 -17.16 -17.16 181.20 168.40 -11.48 53 -1.000 16.52 168.40 155.60 -13.03 54 -1.200 47.64 47.64 155.60 142.80 -14.57 55 -1.400 76.20 76.20 142.80 130.00 -16.08 56 -1.600 102.20 102.20 130.00 117.20 -17.54 57 -1.800 125.64 125.64 117.20 104.40 -18.93 58 -2.000 146.52 146.52 104.40 91.60 -20.24 59 -2.200 164.84 164.84 91.60 78.80 60.00 -22.54 61 -2.400 180.60 180.60 78.80 60.00 -23.52 62 -2.								
52 -0.800 -17.16 -17.16 181.20 168.40 -11.48 53 -1.000 16.52 16.52 168.40 155.60 -13.03 54 -1.200 47.64 47.64 155.60 142.80 -14.57 55 -1.400 76.20 76.20 142.80 130.00 -16.08 56 -1.600 102.20 102.20 130.00 117.20 -17.54 57 -1.800 125.64 125.64 117.20 104.40 -18.93 58 -2.000 146.52 146.52 104.40 91.60 -20.24 59 -2.200 164.84 164.84 91.60 78.80 66.00 -22.54 61 -2.600 193.80 193.80 66.00 53.20 -23.52 62 -2.800 204.44 204.44 53.20 40.40 -24.36 63 -3.000 221.52 212.52 40.40 27.60 -25.07 64	1 1		-92.20	-92.20		194.00	-8.44	
53 -1.000 16.52 16.52 168.40 155.60 -13.03 54 -1.200 47.64 47.64 155.60 142.80 -14.57 55 -1.400 76.20 76.20 142.80 130.00 -16.08 56 -1.600 102.20 102.20 130.00 117.20 -17.54 57 -1.800 125.64 125.64 117.20 104.40 -18.93 58 -2.000 146.52 146.52 104.40 91.60 -20.24 59 -2.200 164.84 164.84 91.60 78.80 -21.44 60 -2.400 180.60 180.60 78.80 66.00 -22.54 61 -2.600 193.80 193.80 66.00 53.20 -23.52 62 -2.800 204.44 204.44 53.20 40.40 -24.36 63 -3.000 212.52 212.52 40.40 27.60 -25.07 64 -3.200<								
55 -1.400 76.20 76.20 142.80 130.00 -16.08 56 -1.600 102.20 102.20 130.00 117.20 -17.54 57 -1.800 125.64 125.64 117.20 104.40 -18.93 58 -2.000 146.52 146.52 104.40 91.60 -20.24 59 -2.200 164.84 164.84 91.60 78.80 -21.44 60 -2.400 180.60 180.60 78.80 66.00 -22.54 61 -2.600 193.80 193.80 66.00 53.20 -23.52 62 -2.800 204.44 204.44 53.20 40.40 -24.36 63 -3.000 212.52 212.52 40.40 27.60 -25.07 64 -3.200 218.04 27.60 14.80 -26.44 65 -3.400 221.00 21.40 2.00 -10.80 -26.33 67 -3.800 219.24 </td <td>53</td> <td>-1.000</td> <td>16.52</td> <td>16.52</td> <td>168.40</td> <td>155.60</td> <td>-13.03</td> <td></td>	53	-1.000	16.52	16.52	168.40	155.60	-13.03	
56 -1.600 102.20 102.20 130.00 117.20 -17.54 57 -1.800 125.64 125.64 117.20 104.40 -18.93 58 -2.000 146.52 146.52 104.40 91.60 -20.24 59 -2.200 164.84 164.84 91.60 78.80 -21.44 60 -2.400 180.60 180.60 78.80 66.00 -22.54 61 -2.600 193.80 193.80 66.00 53.20 -23.52 62 -2.800 204.44 204.44 53.20 40.40 -24.36 63 -3.000 212.52 212.52 40.40 27.60 -25.07 64 -3.200 218.04 218.04 27.60 14.80 -25.64 65 -3.400 221.00 221.00 14.80 2.00 -26.06 66 -3.600 221.40 221.40 2.00 -10.80 -26.33 67 -3.800 </td <td></td> <td></td> <td></td> <td></td> <td>155.60</td> <td></td> <td></td> <td></td>					155.60			
57 -1.800 125.64 125.64 117.20 104.40 -18.93 58 -2.000 146.52 146.52 104.40 91.60 -20.24 59 -2.200 164.84 164.84 91.60 78.80 -21.44 60 -2.400 180.60 180.60 78.80 66.00 -22.54 61 -2.600 193.80 193.80 66.00 53.20 -23.52 62 -2.800 204.44 204.44 53.20 40.40 -24.36 63 -3.000 212.52 212.52 40.40 27.60 -25.07 64 -3.200 218.04 218.04 27.60 14.80 -25.64 65 -3.400 221.00 221.00 14.80 2.00 -10.80 -26.33 67 -3.800 219.24 219.24 -10.80 -23.60 -26.46 68 -4.000 207.24 236.40 -49.20 -26.23 70 -4.400	56	-1.600	102.20	102.20	130.00	117.20	-17.54	
59 -2.200 164.84 164.84 91.60 78.80 -21.44 60 -2.400 180.60 180.60 78.80 66.00 -22.54 61 -2.600 193.80 193.80 66.00 53.20 -23.52 62 -2.800 204.44 204.44 53.20 40.40 -24.36 63 -3.000 212.52 212.52 40.40 27.60 -25.07 64 -3.200 218.04 218.04 27.60 14.80 -25.64 65 -3.400 221.00 221.40 2.00 -26.06 66 -3.600 221.40 221.40 2.00 -10.80 -26.33 67 -3.800 219.24 219.24 -10.80 -23.60 -26.46 68 -4.000 214.52 214.52 -23.60 -36.40 -26.43 69 -4.200 207.24 207.24 -36.40 -49.20 -62.00 -25.96 71 -4.600	57	-1.800	125.64	125.64	117.20		-18.93	
60 -2.400 180.60 180.60 78.80 66.00 -22.54 61 -2.600 193.80 193.80 66.00 53.20 -23.52 62 -2.800 204.44 204.44 53.20 40.40 -24.36 63 -3.000 212.52 212.52 40.40 27.60 -25.07 64 -3.200 218.04 218.04 27.60 14.80 -25.64 65 -3.400 221.00 221.00 14.80 2.00 -26.06 66 -3.600 221.40 221.40 2.00 -10.80 -26.33 67 -3.800 219.24 219.24 -10.80 -23.60 -26.46 68 -4.000 214.52 214.52 -23.60 -36.40 -26.43 69 -4.200 207.24 207.24 -36.40 -49.20 -62.00 -25.96 71 -4.600 185.00 185.00 -62.00 -74.80 -25.52 7							-20.24	
62 -2.800 204.44 204.44 53.20 40.40 -24.36 63 -3.000 212.52 212.52 40.40 27.60 -25.07 64 -3.200 218.04 218.04 27.60 14.80 -25.64 65 -3.400 221.00 221.00 14.80 2.00 -26.06 66 -3.600 221.40 221.40 2.00 -10.80 -26.33 67 -3.800 219.24 219.24 -10.80 -26.46 -26.46 68 -4.000 214.52 214.52 -23.60 -36.40 -26.43 69 -4.200 207.24 207.24 -36.40 -49.20 -26.27 70 -4.400 197.40 197.40 -49.20 -62.00 -25.96 71 -4.600 185.00 185.00 -62.00 -74.80 -87.60 -24.96 73 -5.000 152.52 152.52 -87.60 -94.24 -24.28 <	60	-2.400	180.60	180.60	78.80	66.00	-22.54	
63 -3.000 212.52 212.52 40.40 27.60 -25.07 64 -3.200 218.04 218.04 27.60 14.80 -25.64 65 -3.400 221.00 221.00 14.80 2.00 -26.06 66 -3.600 221.40 221.40 2.00 -10.80 -26.33 67 -3.800 219.24 219.24 -10.80 -23.60 -26.46 68 -4.000 214.52 214.52 -23.60 -36.40 -26.43 69 -4.200 207.24 207.24 -36.40 -49.20 -26.27 70 -4.400 197.40 197.40 -49.20 -62.00 -25.96 71 -4.600 185.00 185.00 -62.00 -74.80 -25.52 72 -4.800 170.04 170.04 -74.80 -87.60 -24.96 74 -5.200 133.67 133.67 -94.24 -94.07 -23.51 75 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
65 -3.400 221.00 221.00 14.80 2.00 -26.06 66 -3.600 221.40 221.40 2.00 -10.80 -26.33 67 -3.800 219.24 219.24 -10.80 -23.60 -26.46 68 -4.000 214.52 214.52 -23.60 -36.40 -26.43 69 -4.200 207.24 207.24 -36.40 -49.20 -26.27 70 -4.400 197.40 197.40 -49.20 -62.00 -25.96 71 -4.600 185.00 185.00 -62.00 -74.80 -25.52 72 -4.800 170.04 170.04 -74.80 -87.60 -24.96 73 -5.000 152.52 152.52 -87.60 -94.24 -94.07 -23.51 75 -5.400 114.86 114.86 -94.07 -93.04 -22.64 76 -5.600 96.25 96.25 -93.04 -91.15 -21.69	I I						-25.07	
66 -3.600 221.40 221.40 2.00 -10.80 -26.33		-3.200						
67 -3.800 219.24 219.24 -10.80 -23.60 -26.46 68 -4.000 214.52 214.52 -23.60 -36.40 -26.43 69 -4.200 207.24 207.24 -36.40 -49.20 -26.27 70 -4.400 197.40 197.40 -49.20 -62.00 -25.96 71 -4.600 185.00 185.00 -62.00 -74.80 -25.52 72 -4.800 170.04 170.04 -74.80 -87.60 -24.96 73 -5.000 152.52 152.52 -87.60 -94.24 -24.28 74 -5.200 133.67 133.67 -94.24 -94.07 -23.51 75 -5.400 114.86 14.86 -94.07 -93.04 -22.64 76 -5.600 96.25 96.25 -93.04 -91.15 -21.69 77 -5.800 78.02 78.02 -91.15 -88.40 -20.68								
69 -4.200 207.24 207.24 -36.40 -49.20 -26.27 70 -4.400 197.40 197.40 -49.20 -62.00 -25.96 71 -4.600 185.00 185.00 -62.00 -74.80 -25.52 72 -4.800 170.04 170.04 -74.80 -87.60 -24.96 73 -5.000 152.52 152.52 -87.60 -94.24 -24.28 74 -5.200 133.67 133.67 -94.24 -94.07 -23.51 75 -5.400 114.86 114.86 -94.07 -93.04 -22.64 76 -5.600 96.25 96.25 -93.04 -91.15 -21.69 77 -5.800 78.02 78.02 -91.15 -88.40 -20.68	67	-3.800	219.24	219.24	-10.80	-23.60	-26.46	
70 -4.400 197.40 197.40 -49.20 -62.00 -25.96 71 -4.600 185.00 185.00 -62.00 -74.80 -25.52 72 -4.800 170.04 170.04 -74.80 -87.60 -24.96 73 -5.000 152.52 152.52 -87.60 -94.24 -24.28 74 -5.200 133.67 133.67 -94.24 -94.07 -23.51 75 -5.400 114.86 114.86 -94.07 -93.04 -22.64 76 -5.600 96.25 96.25 -93.04 -91.15 -21.69 77 -5.800 78.02 78.02 -91.15 -88.40 -20.68		-4.000 -4.200					-26.43	
71 -4.600 185.00 185.00 -62.00 -74.80 -25.52 72 -4.800 170.04 170.04 -74.80 -87.60 -24.96 73 -5.000 152.52 152.52 -87.60 -94.24 -24.28 74 -5.200 133.67 133.67 -94.24 -94.07 -23.51 75 -5.400 114.86 14.86 -94.07 -93.04 -22.64 76 -5.600 96.25 96.25 -93.04 -91.15 -21.69 77 -5.800 78.02 78.02 -91.15 -88.40 -20.68						-62.00	-25.96	
73 -5.000 152.52 152.52 -87.60 -94.24 -24.28 74 -5.200 133.67 133.67 -94.24 -94.07 -23.51 75 -5.400 114.86 114.86 -94.07 -93.04 -22.64 76 -5.600 96.25 96.25 -93.04 -91.15 -21.69 77 -5.800 78.02 78.02 -91.15 -88.40 -20.68	71	-4.600	185.00	185.00	-62.00	-74.80	-25.52	
74 -5.200 133.67 133.67 -94.24 -94.07 -23.51 75 -5.400 114.86 114.86 -94.07 -93.04 -22.64 76 -5.600 96.25 96.25 -93.04 -91.15 -21.69 77 -5.800 78.02 78.02 -91.15 -88.40 -20.68								
76 -5.600 96.25 96.25 -93.04 -91.15 -21.69	74	-5.200	133.67	133.67	-94.24	-94.07	-23.51	
77 -5.800 78.02 -91.15 -88.40 -20.68	1 1							
		-6.000						

格点	Y座標	モーメント	- kN.m/m	せん断力	J kN/m	变 位 x	地盤反力 0
No	GL(m)	上面	下面	上面	下面	mm	kN/m
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	-6.200 -6.400 -6.600 -6.800 -7.000 -7.200 -7.400 -7.800 -8.000 -8.200 -8.400 -8.600 -9.200 -9.400 -9.600	43.38 27.32 12.33 -1.42 -13.76 -24.51 -33.50 -40.56 -45.52 -48.21 -48.44 -46.06 -41.19 -34.61 -27.06 -19.27 -11.97 -5.86	43.38 27.32 12.33 -1.42 -13.76 -24.51 -33.50 -40.56 -45.52 -48.21 -48.44 -46.06 -41.19 -34.61 -27.06 -19.27 -11.97 -5.86	-84.78 -80.30 -74.96 -68.75 -61.69 -53.76 -44.97 -35.32 -24.80 -13.42 -1.18 11.92 24.35 32.92 37.75 38.91 36.50 30.56	-80.30 -74.96 -68.75 -61.69 -53.76 -44.97 -35.32 -24.80 -13.42 -1.18 11.92 24.35 32.92 37.75 38.91 36.50 30.56 21.12	-18.52 -17.38 -16.23 -15.07 -13.91 -12.76 -11.63 -10.52 -9.44 -8.38 -7.36 -6.37 -5.41 -4.48 -3.57 -2.68 -1.81 -0.94	25.72 21.85 18.09 14.42 10.83 7.29 3.78
97 98	-9.800 -10.000	-1.64 0.00	-1.64	21.12 8.20	8.20	-0.07 0.79	0.29 -1.60

印は引張材反力である。

(5)断面力図

最大曲げモーメントMmax = -297.47kN.m/m (G.L. 0.500m) 最大せん断力 Smax = 250.97kN/m (G.L. 0.500m) 最大変位 xmax = -26.46mm (G.L. -3.800m)

図中、矢印の数値は引張材反力(kN/m)である。

3.4.3 壁体応力度

(1)使用断面

断面種類:鋼矢板 使用鋼材:VL型 使用材質:SY295

断面諸	元	単 位	数	値
断面係数 同上 有効率	Z	$\times 10^3 (\text{mm}^3/\text{m})$		3150 0.600
四工 日	Α	× 10 ² (mm ² /m)		267.60

(2)設計断面力

設計断面力は下表の通りとする。

状	態	モーメント M ×10°(N.mm/m)	軸 N × 10³(1	力 N/m)	せん断力 S ×10³(N/m)
Max	時	297.47		0.00	250.97

(3)曲げ応力度

$$\sigma = \frac{M}{\alpha \cdot Z} + \frac{N}{A} \leq \sigma \operatorname{sa}$$

状	態	応力度 N/mm²	許容応力度 sa N/mm²	判	定
MaxE	時	157	270		

(4)せん断応力度

$$au = \frac{S}{A} \leq au a$$

状	態	応力度 N/mm²	許容応力度 a N/mm²	判	定
Max	時	9	125		

3.4.4 引張材応力度

(1)上段引張材の検討

1)使用断面

使用径: 25(mm)使用材質: 高張力鋼690許容応力度: 264(N/mm²)引張材設置間隔L: 2.000(m)引張材使用本数n: 1(本)

引張材断面積 A: 25²×(/4)(mm²)

2)張力の算定

 $P = R \times L$

引張材反力	引張材設置	引張材張力
R	間隔 L	P
kN/m	m	kN/本
29.19	2.000	58.38

3)応力度

$$\sigma = \frac{P \times 10^3}{n \times A} \le \sigma \, a$$

応力度 N/mm²	許容応力度 sa N/mm²	判	定
119	264		

(2)下段引張材の検討

1)使用断面

使用径 : 85(mm) 使用材質 : 高張力鋼690 許容応力度 : 264(N/mm²) 引張材設置間隔L : 2.000(m) 引張材使用本数n : 1(本)

引張材断面積 A: 85²×(/4)(mm²)

2)張力の算定

 $P = R \times L$

引張材反力	引張材設置	引張材張力
R	間隔 L	P
kN/m	m	kN/本
425.22	2.000	850.45

3)応力度

$$\sigma = \frac{P \times 10^3}{n \times A} \leqq \sigma$$
 a

応力度 N/mm²	許容応力度 sa N/mm²	判	定
150	264		

3.4.5 腹起し材応力度

(1)上段腹起し材の検討

1)使用断面

使用鋼材 : [125×65×6×8

使用材質 : SS400

許容応力度: 210(N/mm²) 設置間隔: 2.000(m)

2)モーメントの算定

$$M = \frac{P \times L}{10}$$

引張材張力 P kN/本	引張材設置 間隔 L	モーメント M kN.m/m
58.38	2.000	11.68

3)応力度

$$\sigma = \frac{M \times 10^8}{Z \times 10^3} \le \sigma \, a$$

Z:断面係数(= 67×2cm³)

2枚で1組扱いとし、登録鋼材の断面係数を2倍扱いとする。

応力度 N/mm²	許容応力度 sa N/mm²	判	定
87	210		

(2)下段腹起し材の検討

1)使用断面

使用鋼材 : [380×100×10.5×16

使用材質 : SS400

許容応力度: 210(N/mm²) 設置間隔: 2.000(m)

2)モーメントの算定

$$M = \frac{P \times L}{10}$$

引張材張力	引張材設置	モーメント
P	間隔 L	M
kN/本	m	kN.m/m
850.45	2.000	170.09

3)応力度

$$\sigma = \frac{M \times 10^6}{Z \times 10^3} \le \sigma$$
 a

Z:断面係数(= 763×2cm3)

2枚で1組扱いとし、登録鋼材の断面係数を2倍扱いとする。

応力度 N/mm²	許容応力度 sa N/mm²	判	定
111	210		

3.4.6 4C> hの検討

(1)照査方法

内部摩擦角が0の一様な粘性土地盤の場合には、次式を満足しなければ根入れ長の照査(極限平衡法)を満たし得ないので、別途地盤改良などの対策が必要となる。ここでは、堤体区間の現地盤面で照査する。

c : 現地盤面直下の地盤の粘着力(kN/m²)

i:引張材取り付け点から下の中詰土の各層の単位体積重量(kN/m³)

hi : 引張材取り付け点から下の中詰土の各層の層厚(m)

(2)計算結果一覧

照査面 : G.L. 0.000 (m) 照査面直下の粘着力: c = 20.0 (kN/m²)

残留水位 G.L.(m)	4 • c kN/m²	$h + q$ kN/m^2	判定
0.000	80.00	9.00	

(3) ihi

集計範囲は、引張材位置から現地盤面までとする。

No	層 上 面 標 高 G.L.(m)	層 下 面 標 高 G.L.(m)	層 厚 hi (m)	土 の 単位重量 (kN/m³)	土 の 有効重量 i・hi (kN/m²)
1	0.500	0.000	0.500	18.0	9.00
			0.500		9.00

4章 遮水効果の検討

(1)照査方法

遮水効果(浸透路長)の検討は次の2経路に対して行う。

また、水位条件は、常時ケースの安定計算時(堤内側矢板照査時)とする。

1)浸透路長その1(矢板を沿う場合)

$$F1 = \frac{L1}{h1} \ge FS$$

2)浸透路長その2(堤内側掘削底面に抜ける場合:掘削底面形状が無い場合は省略)

$$F2 = \frac{L2}{h2} \ge FS$$

ここに、

FS:必要安全率(砂質地盤:3.50)

Fi:安全率

L1:浸透路長その1(矢板を沿う場合)

h1:水位差その1 (常時のH.W.L.から堤内現地盤面まで)

L2: 浸透路長その2(堤内側掘削底面に抜ける場合)

h2:水位差その2 (常時のH.W.L.から堤内側掘削底面まで)

(2)計算結果一覧

検討ケース	浸	浸透路長その	01	浸	浸透路長その)2
	L1(m)	h1(m)	安全率F1	L2(m)	h2(m)	安全率F2
常時	28.000	6.400	4.38 3.50	34.101	9.400	3.63 3.50

(3)浸透路長その1(矢板を沿う場合)

L1 = D1 + Lb + D2

ここに、

D1:堤外側矢板埋め込み長(m)

D2: 堤内側矢板埋め込み長(m)

Lb:矢板間距離(m)

 $Lb = (B^2 + L^2)$

B:堤体幅 (8.000m)

L:堤外側矢板と堤内側矢板の長さの差(0.000m)

L1 = 10.000 + 8.000 + 10.000

= 28.000(m)

(4)浸透路長その2(堤内側掘削底面に抜ける場合)

$$L2 = D1 + Lb + Lk$$

ここに、

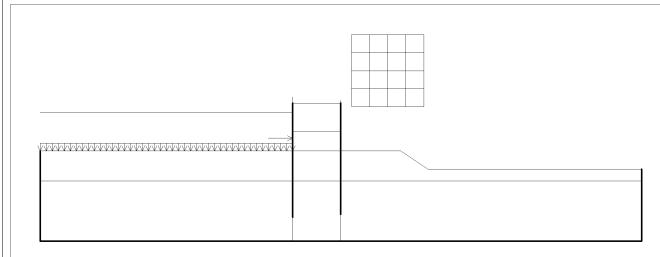
Lk: 堤内側矢板先端から掘削底面までの最短距離

 $Lk = (Bk^2 + Hk^2)$

Bk: 堤内矢板位置から掘削底面開始位置までの距離(幅)(14.500m)

Hk: 堤内側矢板先端と掘削底面の高低差 (7.000m)

L2 = 10.000 + 8.000 + 16.101


= 34.101(m)

5章 円弧すべりの検討

5.1 常時

5.1.1 検討条件

(1)検討モデル

本プログラムの荷重強度の扱い

- ・集中荷重:荷重強度が0.10kN/m未満は無視し、9999.00kN/m超過は9999.0kN/mとする。
- ・分布荷重:両側の荷重強度が0.10kN/m²未満は無視する。また、9999.00kN/m²超過は9999.0kN/m²とする。(2)静水圧について

静水圧については、壁体に作用する水平方向の静水圧を集中荷重で、また、自由水の部分の水の重量は 考慮せず、地表面に作用する鉛直の静水圧を分布荷重で別途考慮する。

1) 堤外側水平方向静水圧(pw1h)

H.W.L. > 堤外区間地表面天端の時に、水平方向静水圧(pw1h)を堤外側矢板に集中荷重で考慮する。

・堤外側水平方向静水圧強度

pw1h = (H. W. L. -堤外区間地表面G. L.)
$$^2 \times \gamma \text{ w} \times \frac{1}{2}$$

= $\left\{ (6.400) - (0.000) \right\}^2 \times 10.00 \times \frac{1}{2} = 204.80 \text{ (kN/m)}$

・作用位置

y = {(H. W. L. -堤外区間地表面G. L.)×
$$\frac{1}{3}$$
} +堤外区間地表面G. L.
= {(6.400)-(0.000)}× $\frac{1}{3}$ +(0.000) = 2.133(m)

2)堤外側鉛直方向静水圧(pw1v)

H.W.L. > 堤外区間地表面天端の時に、鉛直方向静水圧(pw1v)を堤外区間地表面に分布荷重で考慮する。

・堤外側鉛直方向静水圧強度

$$pw1v = (H. W. L. -$$
 堤外区間地表面 $G. L.) \times \gamma w = \{ (6.400) - (6.400) \} \times 10.000 = 64.00 (kN/m²) \}$

(3)上載圧について

上載荷重は無視する。

(4)その他荷重について

その他荷重は無視する。

5.1.2 検討結果

(1)計算結果

解析法: Fellenius法破壞基準: 有効応力法

$$F_{S} \!=\! \frac{MR}{MD} \!=\! \frac{\Sigma \left\{ \left(\mathbf{c} \cdot \mathbf{L} \right) + \left(\mathbf{W}' \cos \alpha - \mathbf{Kh} \cdot \mathbf{W} \sin \alpha \right) \tan \phi \right\}}{\Sigma \left(\!\!\! \mathbf{W} \! \sin \alpha + \mathbf{Kh} \cdot \mathbf{W} \cdot \frac{\mathbf{y}}{R} \right) \! + \! \frac{1}{R} \left\{ \Sigma \, \mathbf{pwh} \cdot \mathbf{ah} \! + \! \Sigma \, \mathbf{pwv} \cdot \mathbf{av} \! + \! \Sigma \, \mathbf{pwd} \cdot \mathbf{awd} \right\}}$$

ここに、

Fs: 円弧すべりに対する安全率

MR : 抵抗モーメント MD : 滑動モーメント c : 粘着力(kN/m²)

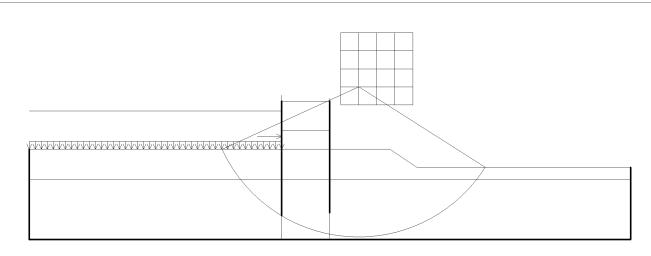
L : スライス底面のすべり面の長さ

W': スライスの有効重量(水中部分の土については 'を考える)(kN/m)

₩ : スライスの全重量(自由水の重量は含まない) (kN/m)。水中部分の土については satを考える。

:スライス底面が水平面となす角度

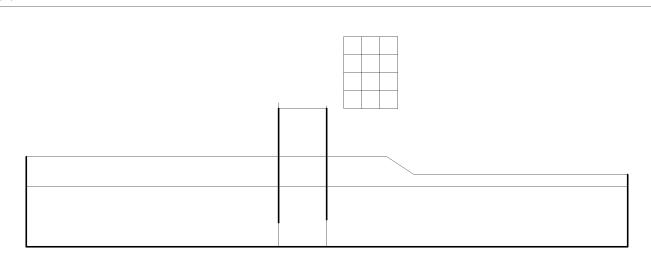
y : スライスの重心とすべり円中心の間の鉛直距離


R : すべり円の半径

Kh : 設計震度(常時は0扱い)

pwh:外水位による水平方向の静水圧 ah:pwhのすべり円中心に関するアーム長 pwv:外水位により地表面に作用する鉛直方向に静水圧 av:pwvのすべり円中心に関するアーム長 pwd:動水圧 (常時は0扱い) awd:pwdのすべり円中心に関するアーム長

検討ケース	円中心座標		半。径	抵 抗 テーメント	滑動	安全率
	X座標(m)	Y座標(m)	(m)	MR (kN.m)	MD (kN.m)	Fs Fsp
常時	4.800	-10.400	25.000	64369.555	34426.344	1.870 1.20


(2)結果図

F.	2	+4	Н	震	中土
5	_	ᅩ	ш,	胺	нп

5.2.1 検討条件

(1)検討モデル

本プログラムの荷重強度の扱い

- ・集中荷重:荷重強度が0.10kN/m未満は無視し、9999.00kN/m超過は9999.0kN/mとする。
- ・分布荷重:両側の荷重強度が0.10kN/m²未満は無視する。また、9999.00kN/m²超過は9999.0kN/m²とする。

(2)静水圧について

静水圧については、壁体に作用する水平方向の静水圧を集中荷重で、また、自由水の部分の水の重量は 考慮せず、地表面に作用する鉛直の静水圧を分布荷重で別途考慮する。

(3)上載圧について

上載荷重は無視する。

(4)その他荷重について

その他荷重は無視する。

5.2.2 検討結果

(1)計算結果

解析法: Fellenius法破壞基準: 有効応力法

$$F_{S} = \frac{MR}{MD} = \frac{\Sigma \left\{ (c \cdot L) + (W' \cos \alpha - Kh \cdot W \sin \alpha) \tan \phi \right\}}{\Sigma \left(W \sin \alpha + Kh \cdot W \cdot \frac{y}{R} \right) + \frac{1}{R} \left\{ \Sigma \, pwh \cdot ah + \Sigma \, pwv \cdot av + \Sigma \, pwd \cdot awd \right\}}$$

ここに、

Fs: 円弧すべりに対する安全率

MR : 抵抗モーメント MD : 滑動モーメント c : 粘着力(kN/m²)

L : スライス底面のすべり面の長さ

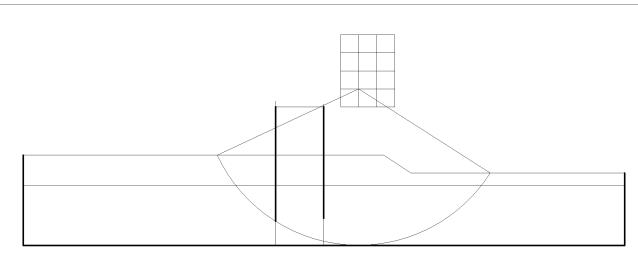
W':スライスの有効重量(水中部分の土については 'を考える)(kN/m)

₩ : スライスの全重量(自由水の重量は含まない) (kN/m)。水中部分の土については satを考える。

: スライス底面が水平面となす角度

y : スライスの重心とすべり円中心の間の鉛直距離

R : すべり円の半径 Kh : 設計震度(0.10)


pwh:外水位による水平方向の静水圧 ah:pwhのすべり円中心に関するアーム長

pwv:外水位により地表面に作用する鉛直方向に静水圧 av:pwvのすべり円中心に関するアーム長

pwd: 動水圧 (常時は0扱い) awd: pwdのすべり円中心に関するアーム長

検討ケース	円中心	ン座標	半。径	抵抗た	滑動	安全率
作業的ケース	X座標(m)	Y座標(m)	(m)	MR (kN.m)	MD (kN.m)	Fs Fsp
地震時	5.800	-11.000	26.000	72250.273	39733.512	1.818 1.00

(2)結果図

6章 円弧すべり結果詳細(常時)

6.1 安定計算条件

6.1.1 設計条件

設計基準 : 任意設計対象 : 任意

水の状態 : 定常浸透時

水の単位体積重量 w 10.00(kN/m³)

破壊基準: 有効応力法 すべりの種類: 円弧すべり 計算法: Fellenius法 水圧の扱い: 体積法

単位重量 ・間隙水圧uの取扱い

	滑動
(1)浸潤線より上	t
(2)浸潤線と低水位線の間	sat(U = 0)
(3)低水位線以下	sat(U = 0)

	抵抗
(1)浸潤線より上	t
(2)浸潤線と低水位線の間	1
(3)低水位線以下	1

6.1.2 計算条件

(1)計算方法の設定

計算種別:常時

荷重

集中荷重、分布荷重をせん断抵抗に考慮しない

鉛直力、水平力とも考慮する

臨界面種別:最小安全率臨界面

必要抑止力Preqの計算を行う

押え盛土の計算を行わない

計画安全率 Fsp 1.20

すべり円中心

すべり円を格子範囲とする

格子内コンターラインの描画を行わない

すべり円半径

すべり円半径を固定としない

すべり円半径の刻み幅 R 1.000 (m)

スライス分割幅 b 0.800(m)

表層すべりの制御

最小すべり幅 0.00(m)

6.1.3 形状·属性

(1)計算対象範囲

ID	X (m)	Y (m)
1	0.000	0.000

ID	X (m)	Y (m)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	10.000 14.500 50.000 50.000 50.000 -8.000 -50.000 -50.000 -8.000 -8.000 -8.000 0.000 0.000	0.000 -3.000 -3.000 -5.000 -15.000 -15.000 -15.000 -15.000 0.000 9.000 9.000 8.000 8.000 8.500 0.000

(2)土質ブロック

1)ブロック名:堤内 - No.1

ID	X (m)	Y (m)
1 2 3 4 5 17 1	0.000 10.000 14.500 50.000 50.000 0.000	0.000 0.000 -3.000 -3.000 -5.000 -5.000 0.000

土性項目	記号(単位)	物性値
湿潤単位体積重量	t (kN/m³)	16.0
飽和単位体積重量	sat (kN/m³)	17.0
水中単位体積重量	' (kN/m³)	6.0
有効応力法における見かけの粘着力	CO' (kN/m²)	20.00
有効応力法における見かけの内部摩擦角	' (度)	0.00

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

2) ブロック名: 堤内 - No.2

ID	X (m)	Y (m)
17	0.000	-5.000
5	50.000	-5.000
6	50.000	-15.000
7	0.000	-15.000
17	0.000	-5.000

土性項目	記号(単位)	物性値
湿潤単位体積重量	t (kN/m³)	18.0
飽和単位体積重量	sat (kN/m³)	20.0
水中単位体積重量	' (kN/m³)	10.0
有効応力法における見かけの粘着力	CO' (kN/m²)	0.00
有効応力法における見かけの内部摩擦角	' (度)	30.00

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

3)ブロック名:中詰土

ID	X (m)	Y (m)
14	-8.000	8.000
15	0.000	8.000
1	0.000	0.000
12	-8.000	0.000
14	-8.000	8.000

土性項目	記号(単位)	物性値
湿潤単位体積重量	t (kN/m³)	18.0
飽和単位体積重量	sat (kN/m³)	20.0
水中単位体積重量	' (kN/m³)	10.0
有効応力法における見かけの粘着力	CO' (kN/m²)	0.00
有効応力法における見かけの内部摩擦角	' (度)	30.00

粘着力に対して深度による増加を考慮しない せん断強度の増加

強度増加を考慮しない

4) ブロック名: 堤体 - No.1

ID	X (m)	Y (m)
12	-8.000	0.000
1	0.000	0.000
17	0.000	-5.000
18	-8.000	-5.000
12	-8.000	0.000

土 性 項 目	記号(単位)	物性値
湿潤単位体積重量	t (kN/m³)	16.0
飽和単位体積重量	sat (kN/m³)	17.0
水中単位体積重量	' (kN/m³)	6.0
有効応力法における見かけの粘着力	CO' (kN/m²)	20.00
有効応力法における見かけの内部摩擦角	' (度)	0.00

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

5)ブロック名: 堤体 - No.2

ID	X (m)	Y (m)
18	-8.000	-5.000
17	0.000	-5.000
7	0.000	-15.000
8	-8.000	-15.000
18	-8.000	-5.000

土 性 項 目	記号(単位)	物性値
湿潤単位体積重量	t (kN/m³)	18.0
飽和単位体積重量	sat (kN/m³)	20.0
水中単位体積重量	' (kN/m³)	10.0
有効応力法における見かけの粘着力	CO' (kN/m²)	0.00
有効応力法における見かけの内部摩擦角	' (度)	30.00

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

6)ブロック名:堤外 - No.1

ID	X (m)	Y (m)
11	-50.000	0.000
12	-8.000	0.000
18	-8.000	-5.000
10	-50.000	-5.000
11	-50.000	0.000

土性項目	記号(単位)	物性値
湿潤単位体積重量	t (kN/m³)	16.0
飽和単位体積重量	sat (kN/m³)	17.0
水中単位体積重量	' (kN/m³)	6.0
有効応力法における見かけの粘着力	CO' (kN/m²)	20.00
有効応力法における見かけの内部摩擦角	' (度)	0.00

粘着力に対して深度による増加を考慮しない せん断強度の増加

強度増加を考慮しない

7) ブロック名:堤外 - No.2

ID	X (m)	Y (m)
10	-50.000	-5.000
18	-8.000	-5.000
8	-8.000	-15.000
9	-50.000	-15.000
10	-50.000	-5.000

土性項目	記号(単位)	物性値
湿潤単位体積重量	t (kN/m³)	18.0
飽和単位体積重量	sat (kN/m³)	20.0
水中単位体積重量	' (kN/m³)	10.0
有効応力法における見かけの粘着力	CO' (kN/m²)	0.00
有効応力法における見かけの内部摩擦角	' (度)	30.00

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

(3)格子範囲

ID	X (m)	Y (m)
26	1.800	19.400
27	13.800	19.400
28	13.800	5.900
29	1.800	5.900

検討格子分割幅 X 3.00(m)

Y 3.00(m)

(5)水位線

ID	X (m)	Y (m)
19	-50.000	6.400
20	-8.000	6.400
21	-8.000	3.200
22	0.000	3.200
1	0.000	0.000
2	10.000	0.000
3	14.500	-3.000
4	50.000	-3.000

(6)集中荷重

1)集中荷重1

ID	X (m)	Y (m)
25	-8.000	2.133

荷重強度 204.8(kN/m)

角度 -90.0(度)

分散角度 0.0(度)

(7)分布荷重

1)分布荷重1

ID	X (m)	Y (m)
12	-8.000	0.000
11	-50.000	0.000

荷重強度 右(上)端 64.0(kN/m²)

左(下)端 64.0(kN/m²)

角度

0.0(度)

分散角度

0.0(度)

(8)ネバーカットライン

1)ネバーカットライン1

ID	X (m)	Y (m)
15	0.000	8.000
23	0.000	-10.500

2)ネバーカットライン2

ID	X (m)	Y (m)
14	-8.000	8.000
24	-8.000	-11.000

3)ネバーカットライン3

ID	X (m)	Y (m)
4 5 6 7 8 9	50.000 50.000 50.000 0.000 -8.000 -50.000	-3.000 -5.000 -15.000 -15.000 -15.000 -5.000
11	-50.000	0.000

(9)マストカットライン

1)マストカットライン1

ID	X (m)	Y (m)
11	-50.000	0.000
12	-8.000	0.000

6.1.4 土質物性値一覧

	土の重量			土性			
ブロック名	湿潤重量	飽和重量	水中重量	粘着力	増加係数	増加基準値	内部摩擦角
	(kN/m³)	sat (kN/m³)	(kN/m³)	Co (kN/m²)	(kN/m³)	yo (m)	(度)
堤内 - No.1	16.0	17.0	6.0	20.00			0.00
│ 堤内 - No.2	18.0	20.0	10.0	0.00			30.00
中詰土	18.0	20.0	10.0	0.00			30.00
│ 堤体 - No.1	16.0	17.0	6.0	20.00			0.00
堤体 - No.2	18.0	20.0	10.0	0.00			30.00
堤外 - No.1	16.0	17.0	6.0	20.00			0.00
堤外 - No.2	18.0	20.0	10.0	0.00			30.00

6.2 臨界面の計算結果

6.2.1 臨界面の詳細結果

(1)滑動

1)鉛直力による滑動モ・メント

₩=(土塊₩)+(水重量)+(慣性力∀)

 $MDv = W \cdot X$

ここに、 W:鉛直方向作用力の総和

MDv :鉛直方向滑動モーメント

X:円弧中心からスライス重心までのアーム長

No	土塊W (mm)	水重量 (mm)	慣性力V (mm)	W (mm)	X (m)	MDv (kN/m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 19 20 1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 55 55 55 55 55 55 55 55 55 55 55	3.24 21.88 40.00 55.86 70.57 85.42 99.01 111.41 122.77 133.20 142.81 155.79 289.22 296.23 302.65 308.50 313.83 313.83 315.207.01 208.95 210.51 211.12 209.74 212.51 212.77 212.13 211.12 209.74	0.00 0.00	0.00 0.00	3.24 21.88 40.00 55.86 70.57 85.42 99.01 111.41 122.77 133.20 142.81 151.65 159.79 289.22 296.23 302.65 308.50 313.83 318.64 322.97 326.82 330.21 207.01 208.95 210.51 211.69 212.51 212.77 212.13 211.12 209.74 207.99 205.86 195.10 185.97 176.47 166.58 156.30 145.61 144.68 138.93 132.63 125.77 118.31 110.19 91.83 81.44 70.14 57.80 44.29 29.54 14.97 1.71	-22.452 -21.854 -21.093 -20.311 -19.522 -18.732 -17.942 -17.151 -16.360 -15.569 -14.777 -13.985 -13.193 -12.398 -11.598 -10.799 -9.199 -8.399 -7.599 -6.799 -5.199 -4.415 -3.646 -2.877 -2.107 -1.338 -0.569 0.200 0.969 1.738 2.507 3.276 4.046 4.815 5.572 6.322 7.072 7.821 8.571 9.320 10.092 10.880 11.669 12.457 13.246 14.034 14.822 15.610 16.397 17.1969 18.751 19.528 20.285 20.865	-72.70 -478.26 -843.68 -1134.62 -1377.56 -1600.20 -1776.46 -1910.82 -2008.51 -2073.80 -2110.21 -2120.77 -2108.06 -3585.88 -3435.82 -3268.17 -3084.67 -2886.89 -2676.31 -2454.29 -2222.13 -1981.05 -1732.22 -913.91 -761.75 -605.52 -446.12 -284.40 -121.21 -42.60 206.20 368.73 529.35 687.21 841.44 1087.15 1175.69 1247.89 1302.85 1339.59 1357.10 1460.14 1511.61 1547.70 1566.79 1566.79 1566.79 1567.04 1548.45 1502.76 1433.40 1335.38 1305.20 1038.63 830.49 576.82 303.69 35.70
-	0.00 9365.78	0.00 0.00	0.00 0.00	0.00 9365.78		-50075.98 -21437.26

2)水平力による滑動モ・メント

 $MDh = H \cdot Y$

ここに、H :水平方向地震時慣性力

MDh :水平方向滑動モーメント

Y : 円弧中心から地震時慣性力までのアーム長

No	慣性力H (mm)	Y (m)	MDh (kN/m)
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 1 22 23 4 25 6 27 8 29 30 31 32 33 34 35 6 37 38 9 40 1 42 43 44 45 65 55 65 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 0.00	0.000 0.000	0.00 0.00
	0.00		0.00

3)滑動モーメントの集計

鉛直力によるMDv:-21437.26水平力によるMDh:0.00静水圧によるMw:0.00荷重によるMp:-12989.08

計 MD: -34426.34(kN/m)

(時計回りをプラスとする)

静水圧による滑動モーメント

 $Mw = Pw \cdot (yo-yg)$

Pw:静水圧合力 (kN)

yo:すべり円中心のY座標 (m) yg:静水圧合力の作用Y座標 (m)

4)鉛直力による滑動力

Ⅴ=(土塊₩)+(水重量)+(慣性力Ⅴ)+(荷重Ⅴ)

No	土塊W	水重量	慣性力V	荷重V	V	すべ!)	V.sin
	(mm)	(mm)	(mm)	(mm)	(mm)	(度)	(mm)
	(mm) 1	(mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(mm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(mm) 27.18 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.72 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(mm) 30.42 72.60 90.72 106.58 121.28 136.14 149.73 162.13 173.49 183.92 193.52 202.36 210.50 289.22 296.23 302.65 308.50 313.83 318.64 322.97 326.82 330.21 333.15 207.01 208.95 210.51 211.69 212.51 212.96 213.05 212.77 212.13 211.12 209.74 207.99 205.86 195.10 185.97 176.58 171.66.58 175.61	(度) -63.908 -60.948 -57.535 -54.334 -51.324 -48.518 -45.857 -43.314 -40.871 -38.514 -36.231 -34.013 -31.850 -29.732 -27.642 -25.592 -23.576 -21.590 -19.631 -17.696 -15.782 -13.885 -12.004 -10.171 -8.385 -12.004 -10.171 -8.385 -3.069 -1.304 0.458 2.222 3.987 5.756 7.531 9.313 11.104 12.879 14.649 16.432 18.232 20.051 21.891	(mm) -27.32 -63.47 -76.54 -86.59 -94.68 -101.99 -107.44 -111.22 -113.52 -114.53 -114.38 -113.44 -137.44 -130.73 -123.39 -115.48 -107.05 -98.17 -88.89 -79.24 -69.29 -36.56 -30.47 -24.22 -17.84 -11.38 -4.85 1.70 8.25 14.75 21.17 27.49 33.66 39.64 43.49 47.03 49.92 52.12 53.59 54.29
4	3 144.68	0.00	0.00	0.00	144.68	23.808	58.40
	4 138.93	0.00	0.00	0.00	138.93	25.799	60.46
	5 132.63	0.00	0.00	0.00	132.63	27.824	61.91
	6 125.77	0.00	0.00	0.00	125.77	29.887	62.67
	7 118.31	0.00	0.00	0.00	118.31	31.993	62.68

No	土塊W (mm)	水重量 (mm)	慣性力V (mm)	荷重V (mm)	V (mm)	すべ!) (度)	V.sin (mm)
48 49 50 51 52 53 54 55 56	110.19 101.39 91.83 81.44 70.14 57.80 44.29 29.54 14.97 1.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	110.19 101.39 91.83 81.44 70.14 57.80 44.29 29.54 14.97	34.148 36.360 38.635 40.983 43.415 45.943 48.579 51.330 54.232 56.576	61.86 60.11 57.33 53.41 48.20 41.54 33.21 23.06 12.15 1.43
+ -	9365.78 0.00 9365.78	0.00 0.00 0.00	0.00 0.00 0.00	635.78 0.00 635.78	10001.56 0.00 10001.56		1145.52 -2454.39 -1308.87

5)水平力による滑動力

H=(慣性力H)+(側水圧)+(荷重H)

(滑動力) = (V·sin) + (H·cos)

(月到	力)=(V•sin) + (H	·cos)			
No	慣性力H (mm)	側水圧 (mm)	荷重H (mm)	H (mm)	すべ!) (度)	H.cos (mm)	滑動力計 (mm)
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-63.908 -60.948 -57.535 -54.334 -51.324 -48.518 -45.857 -43.314 -38.514 -36.231 -34.013 -31.850 -29.732 -27.642 -25.592 -23.576 -21.590 -19.631 -17.696 -15.782 -13.885 -12.004 -10.171 -8.385 -12.004 -10.1711 -8.385	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-27.32 -63.47 -76.54 -86.59 -94.68 -101.99 -107.44 -111.52 -114.53 -114.38 -113.20 -111.08 -143.44 -137.44 -137.44 -137.44 -137.44 -137.44 -137.44 -137.44 -137.44 -137.44 -137.44 -14.38 -115.48 -17.05 -98.17 -88.89 -79.24 -69.29 -36.56 -30.47 -24.22 -17.84 -11.38 -4.85 11.70 8.25 14.75 21.17 27.49 33.66 39.64 43.49 47.03 49.92 52.12 53.59 54.29 56.66 60.46 61.91 62.67 62.68 61.81 62.67 62.68 61.81 57.33 53.41

No	慣性力H (mm)	側水圧 (mm)	荷重H (mm)	H (mm)	すべり (度)	H.cos (mm)	滑動力計 (mm)
5 5 5 5 5	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	43.415 45.943 48.579 51.330 54.232 56.576	0.00 0.00 0.00 0.00 0.00 0.00	48.20 41.54 33.21 23.06 12.15 1.43
+	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00		0.00 0.00 0.00	1145.52 -2454.39 -1308.87

(2)抵抗

1)抵抗力(鉛直力・水平力)

,	」(如且八	· 小十八)							
No	土塊W (mm)	水重量 (mm)	慣性力V (mm)	荷重V (mm)	V (mm)	慣性力H (mm)	荷重H (mm)	側水圧 (mm)	H (mm)
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 6 17 18 19 20 1 22 22 24 25 26 27 28 29 30 31 32 33 34 44 44 44 44 44 45 55 55 55 55 55 55 55	1.14 7.72 14.12 19.72 25.47 32.81 39.60 45.80 56.70 65.92 69.99 169.17 175.88 178.81 181.47 183.88 186.04 187.97 191.14 93.89 94.86 95.64 96.23 96.64 96.87 96.77 96.45 95.95 95.26 94.38 95.26 95.95 95.26 96.77 96.45 97.20 72.99 68.58 68.40 65.52 62.37 55.92 68.58 68.40 65.52 62.37 55.92 68.58 68.40 65.52 62.37 55.92 68.58 68.40 65.52 62.37 55.92 68.58 68.40 65.52 62.37 55.92 68.58 68.40 65.52 62.37 55.92 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.64 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 62.37 56.75 68.58 68.40 65.52 68.58 68.40 65.52 68.58 68.40 68.58 68.40 65.52 68.58 68 68.58 68 68.58 68.58 68 68	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.14 7.72 14.12 19.72 25.47 32.81 39.60 65.92 69.99 169.17 172.67 175.88 178.81 181.47 183.88 186.04 187.97 191.14 93.89 94.86 95.64 96.23 96.64 96.87 96.64 96.87 96.45 95.95 96.77 96.45 97.20 72.99 68.58 68.40 65.52 62.37 55.15 41.97 36.78 31.12 24.96 10.94 5.28	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

No	土塊W (mm)	水重量 (mm)	慣性力V (mm)	荷重V (mm)	V (mm)	慣性力H (mm)	荷重H (mm)	側水圧 (mm)	H (mm)
57	0.60	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.00
- +	4603.64 0.00 4603.64	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	4603.64 0.00 4603.64	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00

2)抵抗力(すべり面鉛直方向成分力)

 $N' = V \cdot cos - H \cdot sin - u \cdot L$

ここに、N':すべり面鉛直方向成分力

V:鉛直力の総和 H:水平力の総和 :すべり角 u:間隙水圧

No V (mm) H (mm) すべり (度) N (mm) u (kN/m) 1 1.14 0.00 -63.91 0.50 0.0 2 7.72 0.00 -60.95 3.75 0.0 3 14.12 0.00 -57.53 7.58 0.0 4 19.72 0.00 -54.33 11.50 0.0 5 25.47 0.00 -51.32 15.92 0.0	1.0 1.6 1.5 1.4 1.3 1.2	U = u · L (mm) 0.00 0.00 0.00 0.00 0.00	N' (mm) 0.50 3.75 7.58
2 7.72 0.00 -60.95 3.75 0.0 3 14.12 0.00 -57.53 7.58 0.0 4 19.72 0.00 -54.33 11.50 0.0 5 25.47 0.00 -51.32 15.92 0.0	1.6 1.5 1.4 1.3 1.2	0.00 0.00 0.00	3.75
6 32.81 0.00 -48.52 21.73 0.0 7 39.60 0.00 -45.86 27.58 0.0 8 45.80 0.00 -40.87 38.93 0.0 9 51.48 0.00 -38.51 44.36 0.0 10 56.70 0.00 -36.23 49.61 0.0 11 61.50 0.00 -36.23 49.61 0.0 12 65.92 0.00 -31.85 59.45 0.0 13 69.99 0.00 -29.73 146.90 0.0 14 169.17 0.00 -29.73 146.90 0.0 15 172.67 0.00 -25.59 158.63 0.0 17 178.81 0.00 -23.58 163.89 0.0 18 181.47 0.00 -23.58 163.89 0.0 19 183.88 0.00 -19.63 173.19 0.0 20 186.04	1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	11.50 15.92 21.73 27.58 33.32 38.93 44.36 49.61 54.64 59.45 163.89 168.74 177.24 180.88 184.12 186.96 92.42 93.84 95.00 96.84 96.91 96.91 96.91 96.92 973.84 983.14

No	V	H	すべり	N	u	L	U = u • L	N'
	(mm)	(mm)	(度)	(mm)	(kN/m)	(m)	(mm)	(mm)
53	24.96	0.00	45.94	17.35	0.0	1.1	0.00	17.35
54	18.20	0.00	48.58	12.04	0.0	1.2	0.00	12.04
55	10.94	0.00	51.33	6.83	0.0	1.3	0.00	6.83
56	5.28	0.00	54.23	3.09	0.0	1.4	0.00	3.09
57	0.60	0.00	56.58	0.33	0.0	0.7	0.00	0.33
+ -	4603.64 0.00 4603.64	0.00 0.00 0.00						4200.07 26.75 4226.82

3)抵抗力・抵抗モーメント

= c • L + N' • tan

ここに、:抵抗力c・L: 粘着抵抗 c: 粘着力 L: スライス弧長

N'・tan :摩擦抵抗 N':すべり面鉛直方向成分力 :内部摩擦角

 $MR = \cdot R$

ここに、MR:抵抗モーメント

:抵抗力

R : すべり円半径

	R : 9	ペリ円手	I						
No	すべり L (m)	c (kN/m)	c·L	N' (mm)	(度)	N'tan (mm)	(mm)	R (m)	MR (kN/m)
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 225 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	0.979 1.650 1.483 1.363 1.271 1.198 1.139 1.090 1.049 1.013 0.983 0.956 0.933 0.921 0.903 0.887 0.873 0.860 0.849 0.840 0.831 0.824 0.818 0.782 0.778 0.772 0.770 0.769 0.770 0.771 0.773 0.776 0.775 0.780 0.780 0.798 0.808 0.808 0.808 0.876	20.000 20.000 20.000 0.0000 0.	19.58 32.99 29.66 27.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.50 3.75 7.58 11.50 15.92 21.73 27.58 33.32 38.93 44.36 49.61 54.64 59.45 146.90 152.97 158.63 163.89 163.89 163.89 177.24 180.88 184.12 186.96 92.42 93.84 95.00 95.89 96.50 96.84 96.91 96.70 96.22 95.46 94.43 93.14 91.57 86.42 82.25 77.89 73.32 68.57 63.64 62.58 58.99	0.00 0.00 0.00 0.00 30.00	0.00 0.00 0.00 0.00 9.19 12.55 15.92 19.24 22.47 25.61 28.64 31.55 34.32 84.81 88.32 91.58 94.62 97.42 99.99 102.33 104.43 106.30 107.94 53.36 54.18 55.571 55.95 55.55 55.11 54.52 53.77 52.87 49.89 47.49 44.97 42.33 39.59 36.74 39.69 39.69 39.69 39.69 47.49 47	19.58 32.99 29.66 27.25 9.19 12.55 15.92 19.24 22.61 28.64 31.55 34.32 84.81 88.32 91.58 94.62 97.42 99.99 102.33 104.43 106.30 107.94 53.36 54.18 55.57 55.95 55.55 55.	25.000 25.000	489.60 824.79 741.48 681.28 229.73 313.65 398.07 480.39 561.86 640.31 716.00 788.66 858.08 2120.33 2207.88 2289.60 2365.51 2435.59 2499.84 2558.26 2610.84 2657.59 2698.49 1333.92 1334.92 1354.25 1371.24 1384.03 1392.87 1397.77 1398.72 1395.72 1388.77 1397.77 1398.72 1395.72 1388.77 1371.24 1384.03 1392.87 1391.77 1391.77 1391.77 1391.72 1381.77 1371.24 1384.03 1392.87 1391.72 1395.72 1388.77 1371.24 1384.03 1392.87
45 46	0.876 0.892 0.910	0.000 0.000 0.000	0.00 0.00 0.00	55.16 51.10	30.00 30.00 30.00	31.85 29.50	31.85 29.50	25.000 25.000 25.000	796.19 737.61

No	すべり L (m)	c (kN/m)	c·L	N' (mm)	(度)	N'tan (mm)	(mm)	R (m)	MR (kN/m)
47 48 49 50 51 52 53 54 55 56	0.930 0.954 0.980 1.010 1.046 1.087 1.136 1.195 1.268 1.359 0.660	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.000 20.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	46.82 42.33 37.65 32.78 27.76 22.61 17.35 12.04 6.83 3.09 0.33	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 0.00 0.00	27.03 24.44 21.74 18.93 16.03 13.05 10.02 6.95 3.94 0.00 0.00	27.03 24.44 21.74 18.93 16.03 13.05 10.02 6.95 3.94 27.19 13.20	25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000	675.83 611.03 543.40 473.20 400.72 326.32 250.49 173.80 98.62 679.64 329.94
+			149.87 0.00 149.87			2424.91 0.00 2424.91	2574.78 0.00 2574.78		64369.56 0.00 64369.56

6.2.2 格子点安全率

y /x	1.800	4.800	7.800	10.800	13.800
19.400 16.400 13.400 10.400 7.400	1.978 2.035 2.004 1.990 1.988	1.919 1.980 1.939 1.870			

7章 円弧すべり結果詳細(地震時)

7.1 安定計算条件

7.1.1 設計条件

設計基準 : 任意設計対象 : 任意

水の状態 : 定常浸透時

水の単位体積重量 w 10.00(kN/m³)

破壊基準: 有効応力法 すべりの種類: 円弧すべり 計算法: Fellenius法 水圧の扱い: 体積法

単位重量 ・間隙水圧uの取扱い

	滑動
(1)浸潤線より上	t
(2)浸潤線と低水位線の間	sat(U = 0)
(3)低水位線以下	sat(U = 0)

	抵抗
(1)浸潤線より上	t
(2)浸潤線と低水位線の間	1
(3)低水位線以下	'

7.1.2 計算条件

(1)計算方法の設定

計算種別:地震時 設計震度 kh 0.100

設計震度 kv 0.000

地震時慣性力をせん断抵抗に考慮する

地震時慣性力の作用位置:スライス重心

荷重

集中荷重、分布荷重をせん断抵抗に考慮しない

鉛直力、水平力とも考慮する 臨界面種別:最小安全率臨界面

必要抑止力Preqの計算を行う

押え盛土の計算を行わない

計画安全率 Fsp 1.00

すべり円中心

すべり円を格子範囲とする

格子内コンターラインの描画を行わない

すべり円半径

すべり円半径を固定としない

すべり円半径の刻み幅 R 1.000 (m)

スライス分割幅 b 0.800(m)

表層すべりの制御

最小すべり幅 0.00(m)

7.1.3 形状・属性

(1)計算対象範囲

(2)土質ブロック

1) ブロック名:堤内 - No.1

ID	X (m)	Y (m)
1 2 3 4 5 17 1	0.000 10.000 14.500 50.000 50.000 0.000	0.000 0.000 -3.000 -3.000 -5.000 -5.000 0.000

土 性 項 目	記号(単位)	物性値
湿潤単位体積重量 飽和単位体積重量 水中単位体積重量 有効応力法における見かけの粘着力 有効応力法における見かけの内部摩擦角 地震時設計震度の補正係数	t (kN/m³) sat (kN/m³) ' (kN/m³) CO' (kN/m²) ' (度)	16.0 17.0 6.0 20.00 0.00 1.0

粘着力に対して深度による増加を考慮しない せん断強度の増加

強度増加を考慮しない

2)ブロック名:堤内 - No.2

ID	X (m)	Y (m)
17	0.000	-5.000
5	50.000	-5.000
6	50.000	-15.000
7	0.000	-15.000
17	0.000	-5.000

土 性 項 目	記号(単位)	物性値
湿潤単位体積重量 飽和単位体積重量 水中単位体積重量 有効応力法における見かけの粘着力 有効応力法における見かけの内部摩擦角 地震時設計震度の補正係数	t (kN/m³) sat (kN/m³) ' (kN/m³) CO' (kN/m²) ' (度)	18.0 20.0 10.0 0.00 30.00 1.0

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

3) ブロック名: 中詰土

	D	X (m)	Y (m)
	14	-8.000	8.000
	15	0.000	8.000
	1	0.000	0.000
	12	-8.000	0.000
	14	-8.000	8.000

土 性 項 目	記号(単位)	物性値
湿潤単位体積重量 飽和単位体積重量 水中単位体積重量 有効応力法における見かけの粘着力 有効応力法における見かけの内部摩擦角 地震時設計震度の補正係数	t (kN/m³) sat (kN/m³) ' (kN/m³) CO' (kN/m²) ' (度)	18.0 20.0 10.0 0.00 30.00 1.0

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

4) ブロック名: 堤体 - No.1

ID	X (m)	Y (m)
12	-8.000	0.000
1	0.000	0.000
17	0.000	-5.000
18	-8.000	-5.000
12	-8.000	0.000

土性項目	記号(単位)	物性値
湿潤単位体積重量 飽和単位体積重量 水中単位体積重量 有効応力法における見かけの粘着力 有効応力法における見かけの内部摩擦角 地震時設計震度の補正係数	t (kN/m³) sat (kN/m³) ' (kN/m³) CO' (kN/m²) ' (度)	16.0 17.0 6.0 20.00 0.00 1.0

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

5) ブロック名: 堤体 - No.2

ID	X (m)	Y (m)
18	-8.000	-5.000
17	0.000	-5.000
7	0.000	-15.000
8	-8.000	-15.000
18	-8.000	-5.000

土性項目	記号(単位)	物性値
湿潤単位体積重量 飽和単位体積重量 水中単位体積重量 有効応力法における見かけの粘着力 有効応力法における見かけの内部摩擦角 地震時設計震度の補正係数	t (kN/m³) sat (kN/m³) ' (kN/m³) CO' (kN/m²) ' (度)	18.0 20.0 10.0 0.00 30.00 1.0

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

6)ブロック名:堤外 - No.1

ID	X (m)	Y (m)
11	-50.000	0.000
12	-8.000	0.000
18	-8.000	-5.000
10	-50.000	-5.000
11	-50.000	0.000

土 性 項 目	記号(単位)	物性値
湿潤単位体積重量 飽和単位体積重量 水中単位体積重量 有効応力法における見かけの粘着力 有効応力法における見かけの内部摩擦角 地震時設計震度の補正係数	t (kN/m³) sat (kN/m³) ' (kN/m³) CO' (kN/m²) ' (度)	16.0 17.0 6.0 20.00 0.00 1.0

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

7) ブロック名: 堤外 - No.2

ID	X (m)	Y (m)
10 18 8 9 10	-50.000 -8.000 -8.000 -50.000	-5.000 -5.000 -15.000 -15.000 -5.000

土性項目	記号(単位)	物性値
湿潤単位体積重量 飽和単位体積重量 水中単位体積重量 有効応力法における見かけの粘着力 有効応力法における見かけの内部摩擦角 地震時設計震度の補正係数	t (kN/m³) sat (kN/m³) ' (kN/m³) CO' (kN/m²) ' (度)	18.0 20.0 10.0 0.00 30.00 1.0

粘着力に対して深度による増加を考慮しない

せん断強度の増加

強度増加を考慮しない

(3)格子範囲

ID	X (m)	Y (m)
21	2.800	20.000
22	12.500	20.000
23	12.500	7.000
24	2.800	7.000

検討格子分割幅 X 3.00(m)

Y 3.00(m)

(5)水位線

ID	X (m)	Y (m)
11	-50.000	0.000
12	-8.000	0.000
12	-8.000	0.000
1	0.000	0.000
1	0.000	0.000
2	10.000	0.000
3	14.500	-3.000

ID	X (m)	Y (m)
4	50.000	-3.000

(6)ネバーカットライン

1)ネバーカットライン1

ID	X (m)	Y (m)
15	0.000	8.000
19	0.000	-10.500

2)ネバーカットライン2

ID	X (m)	Y (m)
14	-8.000	8.000
20	-8.000	-11.000

3)ネバーカットライン3

ID	X (m)	Y (m)
4	50.000	-3.000
5	50.000	-5.000
6	50.000	-15.000
7	0.000	-15.000
8	-8.000	-15.000
10	-50.000	-5.000
11	-50.000	0.000

(7)マストカットライン

1)マストカットライン1

ID	X (m)	Y (m)
11	-50.000	0.000
12	-8.000	0.000

7.1.4 土質物性値一覧

	土の重量			土性			
ブロック名	湿潤重量	飽和重量	水中重量	粘着力	増加係数	増加基準値	内部摩擦角
	(kN/m³)	sat (kN/m³)	(kN/m³)	Co (kN/m²)	(kN/m³)	yo (m)	(度)
堤内 - No.1	16.0	17.0	6.0	20.00			0.00
堤内 - No.2 中詰土	18.0 18.0	20.0 20.0	10.0 10.0	0.00 0.00			30.00 30.00
堤体 - No.1 堤体 - No.2	16.0 18.0	17.0 20.0	6.0 10.0	20.00 0.00			0.00 30.00
堤外 - No.1 堤外 - No.2	16.0 18.0	17.0 20.0	6.0	20.00			0.00 30.00

7.2 臨界面の計算結果

7.2.1 臨界面の詳細結果

(1)滑動

1)鉛直力による滑動モ・メント

₩=(土塊₩)+(水重量)+(慣性力∀)

 $MDv = W \cdot X$

ここに、 W:鉛直方向作用力の総和

MDv :鉛直方向滑動モーメント

X:円弧中心からスライス重心までのアーム長

Г		^ . 土塊W	MDv				
	No	(mm)	水重量 (mm)	慣性力Ⅴ (mm)	W (mm)	X (m)	(kN/m)
	12345678901123415678901123222222222333133333334442444445555555555	1.11 17.22 35.78 52.06 66.81 81.84 95.85 108.65 120.41 131.24 141.23 150.45 158.98 283.67 291.06 297.87 304.11 309.83 315.04 319.76 324.02 327.82 331.18 210.44 212.78 214.74 216.35 217.59 218.49 219.03 219.22 219.05 218.54 217.68 214.89 204.46 195.91 187.00 177.75 168.13 158.14 158.67 153.79 148.43 142.57 136.19 129.26 121.75 113.61 104.80 95.27 84.95 73.76 61.59 48.32 33.78 19.094	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.11 17.22 35.78 52.06 66.81 81.84 95.85 108.65 120.41 131.24 141.23 150.45 158.98 283.67 291.06 297.87 304.11 309.83 315.04 319.76 324.02 327.82 331.18 210.44 212.759 218.49 219.03 219.22 219.05 218.54 217.59 218.54 217.75 168.13 158.14 158.67 158.79 148.43 142.57 136.19 129.26 121.75 113.61 104.80 95.27 84.95 73.76 61.59 48.32 33.78 9802.93	-23.393 -22.837 -22.089 -21.309 -20.521 -19.732 -18.942 -18.151 -17.360 -16.568 -15.777 -14.985 -14.193 -13.398 -12.598 -10.199 -0.999 -6.999 -6.999 -6.999 -6.999 -6.999 -6.999 -6.999 -7.799 -6.999 -6.999 -5.415 -4.646 -3.876 -3.107 -2.338 -1.569 -0.800 -0.031 0.738 1.507 2.277 3.046 3.815 4.572 6.822 7.571 8.321 9.093 9.881 10.498 10.499 10.499 -1	-25.90 -393.21 -790.32 -1109.29 -1371.06 -1614.85 -1815.52 -1972.20 -2090.37 -2174.46 -2228.13 -2254.52 -2256.31 -3800.65 -3666.91 -3514.39 -3344.84 -3159.90 -2961.05 -2749.68 -2527.09 -2294.51 -2053.11 -1139.47 -988.43 -672.25 -508.77 -342.81 -175.20 -6.74 161.74 329.45 495.57 659.28 819.76 934.89 1042.65 1135.47 1212.53 1272.96 1315.47 1212.53 1272.96 1315.87 1442.68 1519.58 1583.69 1633.62 1667.91 1684.95 1682.98 1660.94 1613.96 1315.87 1442.68 1519.58 1583.69 1633.62 1667.91 1684.95 1682.98 1660.94 1613.96 1315.87
L		5552.55	0.00	0.00	3332.00		0

No	土塊W (mm)	水重量 (mm)	慣性力V (mm)	W (mm)	X (m)	MDv (kN/m)
-	0.00 9802.93	0.00 0.00	0.00 0.00	0.00 9802.93		-54834.39 -23420.34

2)水平力による滑動モ・メント

 $MDh = H \cdot Y$

ここに、H: 水平方向地震時慣性力

MDh :水平方向滑動モーメント

Y : 円弧中心から地震時慣性力までのアーム長

	Υ:	ו אוננו	から地震時慣
No	慣性力H (mm)	Y (m)	MDh (kN/m)
1 2 3 4 5 6 7 8 9 10 11 21 31 41 5 16 17 18 19 20 1 22 22 24 25 62 7 28 9 30 31 32 33 34 5 6 47 8 49 50 51 52 53 4 45 64 7 8 49 50 51 52 53 4 55 56 57 88 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 58 59 59 59 59 59 59 59 59 59 59 59 59 59	-0.11 -1.72 -3.58 -5.21 -6.68 -8.18 -9.58 -10.87 -12.04 -13.12 -15.05 -15.09 -28.37 -29.11 -30.98 -31.50 -31.98 -32.40 -32.78 -31.98 -31.76 -21.85 -21.77 -21.63 -21.85 -21.77 -21.63 -21.85 -21.77 -16.81 -15.87 -15.88 -14.426 -13.62 -12.93 -12.17 -11.36 -10.48 -9.53 -7.38 -6.16 -4.83 -3.38 -1.91 -0.44	11.174 11.770 12.354 12.946 13.489 14.030 14.515 14.949 15.342 15.700 16.028 16.330 16.608 12.858 13.103 13.328 13.534 14.049 14.188 14.313 14.422 18.473 18.650 18.615 18.668 18.770 18.770 18.770 18.770 18.770 18.780 18.771 18.770 18	-1.24 -20.16 -44.20 -67.39 -90.12 -114.82 -1139.12 -162.43 -184.74 -206.05 -226.37 -245.69 -264.02 -364.75 -381.39 -397.01 -411.60 -425.17 -437.71 -449.20 -477.65 -388.75 -394.70 -399.75 -403.88 -407.32 -411.31 -410.89 -409.41 -410.89 -409.56 -407.32 -404.17 -400.11 -381.77 -368.87 -354.81 -339.58 -323.20 -305.65 -306.28 -294.47 -281.67 -267.90 -253.14 -237.40 -220.68 -202.98 -184.30 -164.63 -143.98 -142.35 -99.74 -76.15 -51.58 -28.15 -6.35

No	慣性力H (mm)	Y (m)	MDh (kN/m)
- +	0.00 -980.29 -980.29		0.00 -16313.18 -16313.18

3)滑動モーメントの集計

鉛直力による MDv: -23420.34 水平力による MDh: -16313.18 静水圧による Mw: 0.00 荷重による Mp: 0.00

計 MD: -39733.52(kN/m)

(時計回りをプラスとする)

静水圧による滑動モーメント

 $Mw = Pw \cdot (yo-yg)$

Pw:静水圧合力(kN)yo:すべり円中心のY座標(m)yg:静水圧合力の作用Y座標(m)

4)鉛直力による滑動力

Ⅴ= (土塊₩) + (水重量) + (慣性力Ⅴ) + (荷重Ⅴ)

	土塊W	나포트					l
No	(mm)	水重量 (mm)	慣性力V (mm)	荷重V (mm)	V (mm)	すべり (度)	V.sin (mm)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	1.11 17.22 35.78 52.06 66.81 81.84 95.85 108.65 120.41 131.24 141.23 150.45 158.98 283.67 291.06 297.87 304.11 3015.04 319.76 324.02 327.82 331.18 210.44 212.78 214.74 216.35 217.59 218.49 219.03 219.22 219.03 219.22 219.05 218.54 217.68 216.46 214.89	0.00 0.00	0.00 0.00	0.00 0.00	1.11 17.22 35.78 52.06 66.81 81.84 95.85 108.65 120.41 131.24 141.23 150.45 158.98 283.67 291.06 297.87 304.11 309.87 315.04 319.76 324.02 327.82 331.18 210.44 212.78 214.74 216.35 217.59 218.49 219.03 219.05 218.54 217.68 217.68	-64.122 -61.442 -58.165 -55.042 -52.109 -49.355 -46.755 -44.271 -41.885 -39.584 -37.356 -35.192 -33.083 -31.020 -28.984 -26.988 -25.027 -23.096 -21.193 -19.314 -17.456 -15.617 -13.795 -12.020 -10.292 -8.574 -6.864 -5.159 -3.460 -1.763 -0.068 1.627 3.324 5.023 6.727 8.437	-1.00 -15.12 -30.40 -42.66 -52.73 -62.10 -69.82 -75.85 -80.39 -83.63 -85.69 -86.71 -86.78 -146.18 -141.04 -135.17 -128.65 -121.54 -113.89 -105.76 -97.20 -88.25 -78.97 -43.82 -38.02 -32.02 -25.86 -19.57 -13.18 -6.74 -0.26 6.22 12.67 19.06 25.36 31.53

No	土塊W	水重量	慣性力V	荷重V	V	すべ!)	V.sin
	(mm)	(mm)	(mm)	(mm)	(mm)	(度)	(mm)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	204.46 195.91 187.00 177.75 168.13 158.14 158.67 153.79 148.43 142.57 136.19 129.26 121.75 113.61 104.80 95.27 84.95 73.76 61.59 48.32 33.78	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	204.46 195.91 187.00 177.75 168.13 158.14 158.67 153.79 148.43 142.57 136.19 129.26 121.75 113.61 104.80 95.27 84.95 73.76 61.59 48.32 33.78	10.130 11.813 13.506 15.212 16.931 18.666 20.469 22.336 24.228 26.148 28.101 30.089 32.118 34.193 36.319 38.505 40.757 43.086 45.503 48.019 50.632	35.96 40.11 43.68 46.64 48.96 50.61 55.49 58.44 60.91 62.83 64.15 64.80 64.73 63.85 62.07 59.32 55.46 50.39 43.93 35.92 26.11
58	19.09	0.00	0.00	0.00	19.09	53.419	15.33
59	4.44	0.00	0.00	0.00	4.44	55.859	3.68
+ -	9802.93 0.00 9802.93	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	9802.93 0.00 9802.93		1208.21 -2108.99 -900.78

5)水平力による滑動力

H=(慣性力H)+(側水圧)+(荷重H)

(滑動力) = (V·sin) + (H·cos)

N-	慣性力H	側水圧	~ 荷重H	Н	すべり	H.cos	滑動力計
No	(mm)	(mm)	(mm)	(mm)	(度)	(mm)	(mm)
1 2	-0.11	0.00	0.00	-0.11	-64.122	-0.05	-1.04
	-1.72	0.00	0.00	-1.72	-61.442	-0.82	-15.95
3	-3.58	0.00	0.00	-3.58	-58.165	-1.89	-32.28
5	-5.21	0.00	0.00	-5.21	-55.042	-2.98	-45.65
	-6.68	0.00	0.00	-6.68	-52.109	-4.10	-56.83
6	-8.18	0.00	0.00	-8.18	-49.355	-5.33	-67.43
7 8	-9.58	0.00	0.00	-9.58	-46.755	-6.57	-76.39
	-10.87	0.00	0.00	-10.87	-44.271	-7.78	-83.63
9	-12.04	0.00	0.00	-12.04	-41.885	-8.96	-89.36
10	-13.12	0.00	0.00	-13.12	-39.584	-10.11	-93.74
11	-14.12	0.00	0.00	-14.12	-37.356	-11.23	-96.92
12	-15.05	0.00	0.00	-15.05	-35.192	-12.30	-99.00
13	-15.90	0.00	0.00	-15.90	-33.083	-13.32	-100.10
14	-28.37	0.00	0.00	-28.37	-31.020	-24.31	-170.49
15	-29.11	0.00	0.00	-29.11	-28.984	-25.46	-166.50
16	-29.79	0.00	0.00	-29.79	-26.988	-26.54	-161.72
17	-30.41	0.00	0.00	-30.41	-25.027	-27.56	-156.21
18	-30.98	0.00	0.00	-30.98	-23.096	-28.50	-150.04
19	-31.50	0.00	0.00	-31.50	-21.193	-29.37	-143.26
20	-31.98	0.00	0.00	-31.98	-19.314	-30.18	-135.94
21	-32.40	0.00	0.00	-32.40	-17.456	-30.91	-128.11
22	-32.78	0.00	0.00	-32.78	-15.617	-31.57	-119.82
23	-33.12	0.00	0.00	-33.12	-13.795	-32.16	-111.13
24	-21.04	0.00	0.00	-21.04	-12.020	-20.58	-64.41
25	-21.28	0.00	0.00	-21.28	-10.292	-20.94	-58.95
26	-21.47	0.00	0.00	-21.47	-8.574	-21.23	-53.25
27	-21.63	0.00	0.00	-21.63	-6.864	-21.48	-47.34
28	-21.76	0.00	0.00	-21.76	-5.159	-21.67	-41.24
29	-21.85	0.00	0.00	-21.85	-3.460	-21.81	-34.99
30	-21.90	0.00	0.00	-21.90	-1.763	-21.89	-28.63
31	-21.92	0.00	0.00	-21.92	-0.068	-21.92	-22.18
32	-21.91	0.00	0.00	-21.91	1.627	-21.90	-15.68
33	-21.85	0.00		-21.85	3.324	-21.82	-9.15
34	-21.77	0.00	0.00	-21.77	5.023	-21.68	-2.62
35	-21.65	0.00	0.00	-21.65	6.727	-21.50	3.86
36	-21.49	0.00	0.00	-21.49	8.437	-21.26	10.27
37	-20.45	0.00	0.00	-20.45	10.130	-20.13	15.83
38	-19.59	0.00	0.00	-19.59	11.813	-19.18	20.93
	10.00	0.50	0.00	10.00	11.010	10.10	20.00

No	慣性力H	側水圧	荷重H	H	すべ!)	H.cos	滑動力計
	(mm)	(mm)	(mm)	(mm)	(度)	(mm)	(mm)
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	-18.70 -17.77 -16.81 -15.87 -15.38 -14.84 -14.26 -13.62 -12.93 -12.17 -11.36 -10.48 -9.53 -8.50 -7.38 -6.16 -4.83 -3.38 -1.91	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-18.70 -17.77 -16.81 -15.87 -15.38 -14.84 -14.26 -13.62 -12.93 -12.17 -11.36 -10.48 -9.53 -8.50 -7.38 -6.16 -4.83 -3.38	13.506 15.212 16.931 18.666 20.469 22.336 24.228 26.148 28.101 30.089 32.118 34.193 36.319 38.505 40.757 43.086 45.503 48.019 50.642	-18.18 -17.15 -16.08 -14.98 -14.86 -14.22 -13.54 -12.80 -12.01 -11.18 -10.31 -9.40 -8.44 -7.46 -6.44 -5.39 -4.32 -3.23 -2.14	25.49 29.49 32.88 35.63 40.62 44.22 47.37 50.03 52.14 53.62 54.45 53.63 51.86 49.03 45.00 39.62 32.69 23.47
58	-0.44	0.00	0.00	-1.91	53.419	-1.14	14.19
59		0.00	0.00	-0.44	55.859	-0.25	3.43
+ -	0.00 -980.29 -980.29	0.00 0.00 0.00	0.00 0.00 0.00	0.00 -980.29 -980.29		0.00 -894.52 -894.52	884.67 -2679.97 -1795.30

(2)抵抗

1)抵抗力(鉛直力・水平力)

No
2
40

No	土塊W (mm)	水重量 (mm)	慣性力V (mm)	荷重V (mm)	V (mm)	慣性力H (mm)	荷重H (mm)	側水圧 (mm)	H (mm)
42 43 44 44 44 45 50 55 55 55 56 55	75.39 72.95 70.27 67.34 64.15 60.69 56.93 52.86 48.46 93.853 38.53 38.53 32.94 26.85 20.22 71.95 6.74	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	74.85 75.39 72.95 70.27 67.34 64.15 60.69 56.93 52.86 48.46 43.69 38.53 32.94 26.85 20.22 12.95 6.74	-15.81 -15.87 -15.38 -14.84 -14.26 -13.62 -12.93 -12.17 -11.36 -10.48 -9.53 -8.50 -7.38 -6.16 -4.83 -3.38 -1.91	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-15.81 -15.87 -15.38 -14.84 -14.26 -13.62 -12.93 -12.17 -11.36 -10.48 -9.53 -8.50 -7.38 -6.16 -4.83 -3.38 -1.91
+	 	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	5046.01 0.00 5046.01	-0.44 0.00 -980.29 -980.29	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	-0.44 0.00 -980.29 -980.29

2)抵抗力(すべり面鉛直方向成分力)

 $N' = V \cdot cos - H \cdot sin - u \cdot L$

ここに、N':すべり面鉛直方向成分力

V:鉛直力の総和 H:水平力の総和 :すべり角 u:間隙水圧

L : スライス弧長

		ノイスが及						
No	V (mm)	H (mm)	すべ!) (度)	N (mm)	u (kN/m)	L (m)	U = u • L (mm)	N' (mm)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	0.39 6.08 12.63 18.37 23.81 31.01 38.02 44.42 50.30 55.72 60.71 65.32 69.58 189.43 193.13 196.53 199.66 202.51 207.48 209.61 211.51 213.19 95.61 96.77 97.76 98.69 99.18 99.90 99.90 99.99 99.91 99.91 99.66 99.22 98.62	-0.11 -1.72 -3.58 -5.21 -6.68 -8.18 -9.58 -10.87 -12.04 -13.12 -14.12 -15.05 -15.90 -28.37 -29.11 -29.79 -30.41 -30.98 -31.98 -31.98 -32.40 -32.78 -33.12 -21.04 -21.28 -21.63 -21.77 -21.65	-64.12 -61.44 -58.16 -55.04 -52.11 -49.36 -46.76 -44.27 -41.89 -39.58 -37.36 -35.19 -33.08 -31.02 -28.98 -26.99 -25.03 -23.10 -21.19 -19.31 -17.46 -15.62 -13.79 -12.02 -10.29 -8.57 -6.86 -5.16 -3.46 -1.76 -0.07 1.63 3.32 5.02 6.73	0.07 1.39 3.62 6.26 9.35 13.99 19.06 24.22 29.41 34.58 39.69 44.71 49.62 147.73 154.84 161.61 168.05 174.13 179.86 185.23 190.24 194.88 199.14 89.13 91.41 93.46 95.27 96.82 98.13 99.97 100.49 100.75 100.47	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 1.7 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	0.00 0.00	0.07 1.39 3.62 6.26 9.35 13.99 19.06 24.22 29.41 34.58 39.69 44.71 49.62 147.73 154.84 161.61 168.05 174.13 179.86 185.23 190.24 194.88 199.14 89.13 91.41 93.46 95.27 96.82 98.13 99.97 100.49 100.75 100.47

No	V (mm)	H (mm)	すべ!) (度)	N (mm)	u (kN/m)	L (m)	U = u • L (mm)	N' (mm)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	97.83 93.33 89.98 86.47 82.78 78.91 74.85 75.39 72.95 70.27 67.34 64.15 60.69 56.93 52.86 48.46 43.69 38.53 32.94 26.85 20.22 12.95 6.74	-21.49 -20.45 -19.59 -18.70 -17.77 -16.81 -15.87 -15.38 -14.84 -14.26 -13.62 -12.93 -12.17 -11.36 -10.48 -9.53 -8.50 -7.38 -6.16 -4.83 -3.38 -1.91	8.44 10.13 11.81 13.51 15.21 16.93 18.67 20.47 22.34 24.23 26.15 28.10 30.09 32.12 34.19 36.32 38.50 40.76 43.09 45.50 48.02 50.63 53.42	99.92 95.47 92.09 88.45 84.54 80.38 75.97 76.18 73.32 70.17 66.73 63.00 58.99 50.11 45.25 40.12 34.73 29.09 23.21 17.11 10.82 5.55	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1.0 1.1 1.1 1.1 1.2 1.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	99.92 95.47 92.09 88.45 84.54 80.38 75.97 76.18 73.32 70.17 66.73 63.00 58.99 50.11 45.25 40.12 34.73 29.09 23.21 17.11 10.82 5.55
59	1.57	-0.44	55.86	1.25	0.0	1.1	0.00	1.25
+ -	5046.01 0.00 5046.01	0.00 -980.29 -980.29						4507.19 27.49 4534.69

3)抵抗力・抵抗モーメント

= c • L + N' • tan

ここに、 :抵抗力 c:粘着力 L:スライス弧長

N'・tan :摩擦抵抗 N':すべり面鉛直方向成分力 :内部摩擦角

 $MR = \cdot R$

ここに、MR:抵抗モーメント

:抵抗力

R : すべり円半径

	11 . 9	ודנוניי	-						
No	すべり L (m)	c (kN/m)	c·L (mm)	N' (mm)	(度)	N'tan (mm)	(mm)	R (m)	MR (kN/m)
1 2 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20	0.575 1.680 1.510 1.387 1.293 1.218 1.158 1.108 1.065 1.029 0.997 0.997 0.994 0.915 0.898 0.883 0.870 0.858	20.000 20.000 20.000 20.000 20.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	(mm) 11.50 33.60 30.20 27.74 25.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.07 1.39 3.62 6.26 9.35 13.99 19.06 24.22 29.41 34.58 39.69 44.71 49.62 147.73 154.84 161.61 168.05 174.13 179.86 185.23	(度) 0.00 0.00 0.00 0.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	0.00 0.00 0.00 0.00 0.00 8.08 11.01 13.99 16.98 19.96 22.91 25.81 28.65 85.29 89.40 93.31 97.02 100.53 103.84 106.94	11.50 33.60 30.20 27.74 25.86 8.08 11.01 13.99 16.98 19.96 22.91 25.81 28.65 85.29 89.40 93.31 97.02 100.53 103.84 106.94	26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000 26.000	298.99 873.67 785.14 721.14 672.30 210.04 286.18 363.62 441.47 519.03 595.75 671.17 744.90 2217.52 2324.29 2426.00 2522.56 2613.87 2699.88 2780.50
21 22 23 24 25 26 27	0.839 0.831 0.824 0.787 0.782 0.778 0.775	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	190.24 194.88 199.14 89.13 91.41 93.46 95.27	30.00 30.00 30.00 30.00 30.00 30.00	109.83 112.51 114.98 51.46 52.78 53.96 55.00	109.83 112.51 114.98 51.46 52.78 53.96 55.00	26.000 26.000 26.000 26.000 26.000 26.000 26.000	2855.67 2925.32 2989.38 1337.90 1372.23 1402.97 1430.06

No	すべり L (m)	c (kN/m)	c·L (mm)	N' (mm)	(度)	N'tan (mm)	(mm)	R (m)	MR (kN/m)
28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 50 51 52 53 54 55 57 58 59	0.772 0.771 0.770 0.769 0.770 0.775 0.775 0.775 0.778 0.762 0.766 0.771 0.777 0.784 0.792 0.842 0.853 0.865 0.879 0.894 0.912 0.932 0.954 0.912 1.081 1.127 1.182 1.248 1.330 1.056	0.000 0.000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	96.82 98.13 99.18 99.97 100.49 100.76 100.75 100.47 99.92 95.47 92.09 88.45 84.54 80.38 75.97 76.18 73.32 70.17 66.73 63.00 58.99 54.69 50.11 45.25 40.12 34.73 29.09 23.21 17.11 10.82 5.55 1.25	30.00 30.00	55.90 56.65 57.26 57.26 58.17 58.01 57.69 55.12 53.17 51.06 48.81 43.86 43.98 42.33 40.51 38.53 36.38 34.05 31.57 28.93 26.13 23.17 20.05 16.80 9.88 60.00 0.00	55.90 56.65 57.26 57.72 58.02 58.17 58.01 57.69 55.12 53.17 51.06 48.81 43.86 43.98 42.33 40.51 38.53 36.38 34.06 31.57 28.93 26.13 23.17 20.05 16.80 9.88 6.25 26.61 21.13	26.000 26.000	1453. 43 1473. 01 1488. 76 1500. 61 1508. 52 1512. 45 1512. 36 1508. 19 1499. 93 1433. 06 1382. 36 1327. 67 1269. 08 1206. 65 1140. 47 1143. 51 1100. 61 1053. 35 1001. 73 945. 76 885. 49 820. 95 752. 18 679. 27 602. 30 521. 40 436. 71 348. 46 256. 91 162. 47 691. 81 549. 26
+			176.63 0.00 176.63			2602.23 0.00 2602.23	2778.86 0.00 2778.86		72250.27 0.00 72250.27

7.2.2 格子点安全率

y /x	2.800	5.800	8.800	11.800
20.000 17.000 14.000 11.000 8.000	2.015 2.047 2.048 2.017 2.009	1.857 1.893 1.855 1.818		